Submission #230071

#TimeUsernameProblemLanguageResultExecution timeMemory
230071grtCollecting Stamps 3 (JOI20_ho_t3)C++17
100 / 100
138 ms134008 KiB
#include <bits/stdc++.h> #define PB push_back #define ST first #define ND second #define _ ios_base::sync_with_stdio(0); cin.tie(0); //mt19937 rng(chrono::high_resolution_clock::now().time_since_epoch().count()); using namespace std; using ll = long long; using pi = pair<int,int>; using vi = vector<int>; const int nax = 200+10; const ll INF = 1e18; int n,l; int dist[nax], tim[nax]; ll dp[nax][nax][nax][2]; int get_dist(int i, int j) { return (i <= j ? dist[j] - dist[i] : l - dist[i] + dist[j]); } int main() {_ cin >> n >> l; for(int i = 1; i <= n; ++i) { cin >> dist[i]; } for(int i = 1; i <= n; ++i) { cin >> tim[i]; } for(int i = 0; i <= n; ++i) { for(int j = 0; j <= n; ++j) { for(int k = 0; k <= n; ++k) { dp[i][j][k][0] = dp[i][j][k][1] = INF; } } } dp[0][0][0][0] = 0; dp[0][0][0][1] = 0; int cur = 0; int cnt = 0; int ans = 0; for(int i = 1; i <= n; ++i) { if(dist[i] <= tim[i]) { cnt++; } dp[0][i][cnt][1] = dist[i]; dp[0][i][cnt][0] = 2 * dist[i]; ans = max(ans,cnt); } cnt = 0; dist[n+1] = l; for(int i = 1; i <= n; ++i) { cur += dist[n-i+2] - dist[n-i+1]; if(cur <= tim[n - i + 1]) { cnt++; } dp[i][0][cnt][0] = cur; dp[i][0][cnt][1] = 2 * cur; //cout << i << " " << cur << " " << cnt << "\n"; ans = max(ans,cnt); } for(int k = 0; k <= n; ++k) { for(int i = 1; i <= n; ++i) { for(int j = 1; j <= n; ++j) { if(i + j > n || i + j < k) continue; dp[i][j][k][0] = min({dp[i][j][k][0],dp[i-1][j][k][0] + get_dist(n - i + 1, n - i +2), dp[i-1][j][k][1] + get_dist(n - i + 1, j)}); dp[i][j][k][1] = min({dp[i][j][k][1],dp[i][j-1][k][1] + get_dist(j-1, j), dp[i][j-1][k][0] + get_dist(n-i+1, j)}); if(k > 0) { if(tim[n - i + 1] >= min(dp[i-1][j][k][1] + get_dist(n - i + 1, j),dp[i-1][j][k][0] + get_dist(n - i + 1, n - i +2))) { dp[i][j][k+1][0] = min(dp[i][j][k+1][0], min(dp[i-1][j][k][1] + get_dist(n - i + 1, j),dp[i-1][j][k][0] + get_dist(n - i + 1, n - i +2))); } if(tim[j] >= min(dp[i][j-1][k][1] + get_dist(j-1, j), dp[i][j-1][k][0] + get_dist(n-i+1, j))) { dp[i][j][k+1][1] = min(dp[i][j][k+1][1], min(dp[i][j-1][k][1] + get_dist(j-1, j), dp[i][j-1][k][0] + get_dist(n-i+1, j))); } if(dp[i][j][k][0] < INF || dp[i][j][k][1] < INF) { ans = max(ans,k); } } } } } //~ for(int i = 0; i <= n; ++i) { //~ for(int j = 0; j <= n; ++j) { //~ for(int k = 0; k <= n; ++k) { //~ if(i + j > n || i + j < k) continue; //~ for(int o : {0,1}) { //~ cout << "[" << i << " " << j << " " << k << " " << o << "] : " << (dp[i][j][k][o] != INF ? dp[i][j][k][o] : -1) << "\n"; //~ } //~ } //~ } //~ } cout << ans; }

Compilation message (stderr)

ho_t3.cpp: In function 'int main()':
ho_t3.cpp:21:17: warning: assuming signed overflow does not occur when assuming that (X - c) <= X is always true [-Wstrict-overflow]
  return (i <= j ? dist[j] - dist[i] : l - dist[i] + dist[j]);
         ~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
ho_t3.cpp:21:17: warning: assuming signed overflow does not occur when assuming that (X - c) <= X is always true [-Wstrict-overflow]
  return (i <= j ? dist[j] - dist[i] : l - dist[i] + dist[j]);
         ~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
ho_t3.cpp:21:17: warning: assuming signed overflow does not occur when assuming that (X - c) <= X is always true [-Wstrict-overflow]
  return (i <= j ? dist[j] - dist[i] : l - dist[i] + dist[j]);
         ~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
ho_t3.cpp:21:17: warning: assuming signed overflow does not occur when assuming that (X + c) >= X is always true [-Wstrict-overflow]
  return (i <= j ? dist[j] - dist[i] : l - dist[i] + dist[j]);
         ~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
ho_t3.cpp:21:17: warning: assuming signed overflow does not occur when assuming that (X + c) >= X is always true [-Wstrict-overflow]
  return (i <= j ? dist[j] - dist[i] : l - dist[i] + dist[j]);
         ~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
ho_t3.cpp:21:17: warning: assuming signed overflow does not occur when assuming that (X + c) >= X is always true [-Wstrict-overflow]
  return (i <= j ? dist[j] - dist[i] : l - dist[i] + dist[j]);
         ~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...