답안 #222014

# 제출 시각 아이디 문제 언어 결과 실행 시간 메모리
222014 2020-04-11T20:30:57 Z rqi Tents (JOI18_tents) C++14
100 / 100
313 ms 35968 KB
#include <bits/stdc++.h>
using namespace std;
 
typedef long long ll;
typedef long double ld;
typedef double db; 
typedef string str; 

typedef pair<int,int> pi;
typedef pair<ll,ll> pl; 
typedef pair<db,db> pd; 

typedef vector<int> vi; 
typedef vector<ll> vl; 
typedef vector<db> vd; 
typedef vector<str> vs; 
typedef vector<pi> vpi;
typedef vector<pl> vpl; 
typedef vector<pd> vpd; 

#define mp make_pair 
#define f first
#define s second
#define sz(x) (int)x.size()
#define all(x) begin(x), end(x)
#define rall(x) (x).rbegin(), (x).rend() 
#define rsz resize
#define ins insert 
#define ft front() 
#define bk back()
#define pf push_front 
#define pb push_back
#define eb emplace_back 
#define lb lower_bound 
#define ub upper_bound 

#define FOR(i,a,b) for (int i = (a); i < (b); ++i)
#define F0R(i,a) FOR(i,0,a)
#define ROF(i,a,b) for (int i = (b)-1; i >= (a); --i)
#define R0F(i,a) ROF(i,0,a)
#define trav(a,x) for (auto& a: x)

const int MOD = 1e9+7; // 998244353;
const int MX = 2e5+5; 
const ll INF = 1e18; 
const ld PI = acos((ld)-1);
const int xd[4] = {1,0,-1,0}, yd[4] = {0,1,0,-1}; 

template<class T> bool ckmin(T& a, const T& b) { 
	return b < a ? a = b, 1 : 0; }
template<class T> bool ckmax(T& a, const T& b) { 
	return a < b ? a = b, 1 : 0; } 
int pct(int x) { return __builtin_popcount(x); } 
int bit(int x) { return 31-__builtin_clz(x); } // floor(log2(x)) 
int cdiv(int a, int b) { return a/b+!(a<0||a%b == 0); } // division of a by b rounded up, assumes b > 0 

// INPUT
template<class A> void re(complex<A>& c);
template<class A, class B> void re(pair<A,B>& p);
template<class A> void re(vector<A>& v);
template<class A, size_t SZ> void re(array<A,SZ>& a);

template<class T> void re(T& x) { cin >> x; }
void re(db& d) { str t; re(t); d = stod(t); }
void re(ld& d) { str t; re(t); d = stold(t); }
template<class H, class... T> void re(H& h, T&... t) { re(h); re(t...); }

template<class A> void re(complex<A>& c) { A a,b; re(a,b); c = {a,b}; }
template<class A, class B> void re(pair<A,B>& p) { re(p.f,p.s); }
template<class A> void re(vector<A>& x) { trav(a,x) re(a); }
template<class A, size_t SZ> void re(array<A,SZ>& x) { trav(a,x) re(a); }

// TO_STRING
#define ts to_string
template<class A, class B> str ts(pair<A,B> p);
template<class A> str ts(complex<A> c) { return ts(mp(c.real(),c.imag())); }
str ts(bool b) { return b ? "true" : "false"; }
str ts(char c) { str s = ""; s += c; return s; }
str ts(str s) { return s; }
str ts(const char* s) { return (str)s; }
str ts(vector<bool> v) { 
	bool fst = 1; str res = "{";
	F0R(i,sz(v)) {
		if (!fst) res += ", ";
		fst = 0; res += ts(v[i]);
	}
	res += "}"; return res;
}
template<size_t SZ> str ts(bitset<SZ> b) {
	str res = ""; F0R(i,SZ) res += char('0'+b[i]);
	return res; }
template<class T> str ts(T v) {
	bool fst = 1; str res = "{";
	for (const auto& x: v) {
		if (!fst) res += ", ";
		fst = 0; res += ts(x);
	}
	res += "}"; return res;
}
template<class A, class B> str ts(pair<A,B> p) {
	return "("+ts(p.f)+", "+ts(p.s)+")"; }

// OUTPUT
template<class A> void pr(A x) { cout << ts(x); }
template<class H, class... T> void pr(const H& h, const T&... t) { 
	pr(h); pr(t...); }
void ps() { pr("\n"); } // print w/ spaces
template<class H, class... T> void ps(const H& h, const T&... t) { 
	pr(h); if (sizeof...(t)) pr(" "); ps(t...); }

// DEBUG
void DBG() { cerr << "]" << endl; }
template<class H, class... T> void DBG(H h, T... t) {
	cerr << to_string(h); if (sizeof...(t)) cerr << ", ";
	DBG(t...); }
#ifdef LOCAL // compile with -DLOCAL
#define dbg(...) cerr << "[" << #__VA_ARGS__ << "]: [", DBG(__VA_ARGS__)
#else
#define dbg(...) 42
#endif

// FILE I/O
void setIn(string s) { freopen(s.c_str(),"r",stdin); }
void setOut(string s) { freopen(s.c_str(),"w",stdout); }
void unsyncIO() { ios_base::sync_with_stdio(0); cin.tie(0); }
void setIO(string s = "") {
	unsyncIO();
	// cin.exceptions(cin.failbit); 
	// throws exception when do smth illegal
	// ex. try to read letter into int
	if (sz(s)) { setIn(s+".in"), setOut(s+".out"); } // for USACO
}

mt19937 rng((uint32_t)chrono::steady_clock::now().time_since_epoch().count()); 

/**
 * Description: modular arithmetic operations 
 * Source: 
	* KACTL
	* https://codeforces.com/blog/entry/63903
	* https://codeforces.com/contest/1261/submission/65632855 (tourist)
	* https://codeforces.com/contest/1264/submission/66344993 (ksun)
 * Verification: 
	* https://open.kattis.com/problems/modulararithmetic
 */

struct mi {
	typedef decay<decltype(MOD)>::type T; 
 	/// don't silently convert to T
	T v; explicit operator T() const { return v; }
	mi() { v = 0; }
	mi(ll _v) { 
		v = (-MOD < _v && _v < MOD) ? _v : _v % MOD;
		if (v < 0) v += MOD;
	}
	friend bool operator==(const mi& a, const mi& b) { 
		return a.v == b.v; }
	friend bool operator!=(const mi& a, const mi& b) { 
		return !(a == b); }
	friend bool operator<(const mi& a, const mi& b) { 
		return a.v < b.v; }
	friend void re(mi& a) { ll x; re(x); a = mi(x); }
	friend str ts(mi a) { return ts(a.v); }
   
	mi& operator+=(const mi& m) { 
		if ((v += m.v) >= MOD) v -= MOD; 
		return *this; }
	mi& operator-=(const mi& m) { 
		if ((v -= m.v) < 0) v += MOD; 
		return *this; }
	mi& operator*=(const mi& m) { 
		v = (ll)v*m.v%MOD; return *this; }
	mi& operator/=(const mi& m) { return (*this) *= inv(m); }
	friend mi pow(mi a, ll p) {
		mi ans = 1; assert(p >= 0);
		for (; p; p /= 2, a *= a) if (p&1) ans *= a;
		return ans;
	}
	friend mi inv(const mi& a) { assert(a.v != 0); 
		return pow(a,MOD-2); }
		
	mi operator-() const { return mi(-v); }
	mi& operator++() { return *this += 1; }
	mi& operator--() { return *this -= 1; }
	friend mi operator+(mi a, const mi& b) { return a += b; }
	friend mi operator-(mi a, const mi& b) { return a -= b; }
	friend mi operator*(mi a, const mi& b) { return a *= b; }
	friend mi operator/(mi a, const mi& b) { return a /= b; }
};
typedef vector<mi> vmi;
typedef pair<mi,mi> pmi;
typedef vector<pmi> vpmi;

/**
 * Description: pre-compute factorial mod inverses,
 	* assumes $MOD$ is prime and $SZ < MOD$.
 * Time: O(SZ)
 * Source: KACTL
 * Verification: https://dmoj.ca/problem/tle17c4p5
 */

vi invs, fac, ifac;
void genFac(int SZ) {
	invs.rsz(SZ), fac.rsz(SZ), ifac.rsz(SZ); 
	invs[1] = fac[0] = ifac[0] = 1; 
	FOR(i,2,SZ) invs[i] = MOD-(ll)MOD/i*invs[MOD%i]%MOD;
	FOR(i,1,SZ) {
		fac[i] = (ll)fac[i-1]*i%MOD;
		ifac[i] = (ll)ifac[i-1]*invs[i]%MOD;
	}
}

ll comb(int a, int b) {
	if (a < b || b < 0) return 0;
	return (ll)fac[a]*ifac[b]%MOD*ifac[a-b]%MOD;
}



mi dp[3005][3005];

int main() {
	setIO();
	genFac(10000);
	int H, W;
	cin >> H >> W;
	for(int i = 0; i <= H; i++) dp[i][0] = 1;
	for(int i = 0; i <= W; i++) dp[0][i] = 1;

	for(int i = 1; i <= H; i++){
		for(int j = 1; j <= W; j++){
			//put nothing in top row
			dp[i][j]+=dp[i-1][j];
			//put EW in top row
			if(j >= 2) dp[i][j]+=mi(comb(j, 2))*dp[i-1][j-2];
			//put S in top row, pick a N
			if(i >= 2) dp[i][j]+=mi(i-1)*mi(j)*dp[i-2][j-1];
			//put something alone in top row
			dp[i][j]+=mi(j)*mi(4)*dp[i-1][j-1];

		}
	}
	//ps(dp[1][0], dp[0][1], dp[1][1]);
	dp[H][W]-=mi(1);
	ps(dp[H][W]);
	// you should actually read the stuff at the bottom
}

/* stuff you should look for
	* int overflow, array bounds
	* special cases (n=1?)
	* do smth instead of nothing and stay organized
	* WRITE STUFF DOWN
*/

Compilation message

tents.cpp: In function 'void setIn(std::__cxx11::string)':
tents.cpp:123:31: warning: ignoring return value of 'FILE* freopen(const char*, const char*, FILE*)', declared with attribute warn_unused_result [-Wunused-result]
 void setIn(string s) { freopen(s.c_str(),"r",stdin); }
                        ~~~~~~~^~~~~~~~~~~~~~~~~~~~~
tents.cpp: In function 'void setOut(std::__cxx11::string)':
tents.cpp:124:32: warning: ignoring return value of 'FILE* freopen(const char*, const char*, FILE*)', declared with attribute warn_unused_result [-Wunused-result]
 void setOut(string s) { freopen(s.c_str(),"w",stdout); }
                         ~~~~~~~^~~~~~~~~~~~~~~~~~~~~~
# 결과 실행 시간 메모리 Grader output
1 Correct 24 ms 35968 KB Output is correct
2 Correct 25 ms 35840 KB Output is correct
3 Correct 25 ms 35840 KB Output is correct
4 Correct 24 ms 35840 KB Output is correct
5 Correct 25 ms 35840 KB Output is correct
6 Correct 25 ms 35840 KB Output is correct
7 Correct 25 ms 35832 KB Output is correct
8 Correct 24 ms 35840 KB Output is correct
9 Correct 24 ms 35840 KB Output is correct
10 Correct 25 ms 35840 KB Output is correct
11 Correct 24 ms 35832 KB Output is correct
12 Correct 27 ms 35840 KB Output is correct
# 결과 실행 시간 메모리 Grader output
1 Correct 24 ms 35968 KB Output is correct
2 Correct 25 ms 35840 KB Output is correct
3 Correct 25 ms 35840 KB Output is correct
4 Correct 24 ms 35840 KB Output is correct
5 Correct 25 ms 35840 KB Output is correct
6 Correct 25 ms 35840 KB Output is correct
7 Correct 25 ms 35832 KB Output is correct
8 Correct 24 ms 35840 KB Output is correct
9 Correct 24 ms 35840 KB Output is correct
10 Correct 25 ms 35840 KB Output is correct
11 Correct 24 ms 35832 KB Output is correct
12 Correct 27 ms 35840 KB Output is correct
13 Correct 24 ms 35840 KB Output is correct
14 Correct 24 ms 35832 KB Output is correct
15 Correct 201 ms 35840 KB Output is correct
16 Correct 35 ms 35832 KB Output is correct
17 Correct 64 ms 35840 KB Output is correct
18 Correct 74 ms 35840 KB Output is correct
19 Correct 241 ms 35848 KB Output is correct
20 Correct 191 ms 35960 KB Output is correct
21 Correct 133 ms 35840 KB Output is correct
22 Correct 132 ms 35840 KB Output is correct
23 Correct 89 ms 35832 KB Output is correct
24 Correct 313 ms 35960 KB Output is correct
25 Correct 240 ms 35840 KB Output is correct
26 Correct 273 ms 35832 KB Output is correct
27 Correct 301 ms 35960 KB Output is correct