Submission #221642

#TimeUsernameProblemLanguageResultExecution timeMemory
221642rama_pangICC (CEOI16_icc)C++14
0 / 100
6 ms512 KiB
// Solution: // - Maintain Disjoint Components of all Vertices // - Every time a new road is added, we first find out how to separate // current components into 2 sets such that the new edge connect them // - Consider how to check if two sets are connectd with the new edge. If yes, // we have found the split. If no, we recurse to set1 and set2. However // we can optimize this, by noticing that when we query the first half of // set1 to find if there is an edge in second half of set1 or not, as well // as set2, we can merge these queries together: we query the first half // of set1 and set2 with the second half of set1 and set2, since set1 and // set2 is edge disjoint this doesn't affect answer. With this, we can // find such a cut in O(log N). // - Binary search for the affected vertex in each disjoint set, to get // the new edge. // - Upper bound is 3 N log N queries, this pass for 90 points. // - We try to find 2 connected components A and B directly. // - We can find A xor B by querying for every bit, we query the components with // on bit and off bit. If it returns 1, then A xor B for that bit = 1. // - Let X be an on bit in A xor B. We try to recover A and B. Assume X-th bit // in A is off and X-th bit in B is on. // - If the i-th bit of A xor B is 0, we query sets where set1 has 0 in the i-th // bit and 0 in the X-th bit, and set2 has 0 in the i-th bit and 1 in the X-th // bit. If it returns 1, that means A = B = 0 in the i-th bit. Otherwise, A = B = 1. // - If the i-th bit of A xor B is 1, we query sets where set1 has 0 in the i-th // bit and 0 in the X-th bit, and set2 has 1 in the i-th bit and 1 in the X-th // bit. If it returns 1, that means A = 0 and B = 1 in the i-th bit. Otherwise, A = 1 // and B = 0. // - We found A and B. Now find the endpoint in the same way as before. // - This approach uses approximately 1600 queries, and passes for full points. #include "icc.h" #include <bits/stdc++.h> using namespace std; mt19937 rnd(chrono::high_resolution_clock::now().time_since_epoch().count()); vector<vector<int>> components; int Query(vector<int> A, vector<int> B) { if (A.empty() || B.empty()) return 0; return query(A.size(), B.size(), A.data(), B.data()); } int QueryComponent(vector<int> A, vector<int> B) { vector<int> P, Q; for (auto i : A) { for (auto j : components[i]) { P.emplace_back(j); } } for (auto i : B) { for (auto j : components[i]) { Q.emplace_back(j); } } return Query(P, Q); } void Answer(int A, int B) { return setRoad(A, B); } pair<int, int> BinarySearch(vector<int> A, vector<int> B, bool onComponent) { if (A.size() < B.size()) swap(A, B); if (A.size() == 1 && B.size() == 1) return {A[0], B[0]}; int mid = A.size() / 2; vector<int> L(begin(A), begin(A) + mid), R(begin(A) + mid, end(A)); bool res; if (onComponent) { if (R.empty() || QueryComponent(L, B)) { return BinarySearch(L, B, onComponent); } else { return BinarySearch(R, B, onComponent); } } else { if (R.empty() || Query(L, B)) { return BinarySearch(L, B, onComponent); } else { return BinarySearch(R, B, onComponent); } } } void MergeComponent(int C1, int C2) { vector<int> Merged; for (auto i : components[C1]) Merged.emplace_back(i); for (auto i : components[C2]) Merged.emplace_back(i); components[C1].clear(); components[C2].clear(); sort(begin(components), end(components), [&](const vector<int> &a, const vector<int> &b) { return a.size() > b.size(); }); while (!components.empty() && components.back().empty()) components.pop_back(); components.emplace_back(Merged); } pair<int, int> RecoverFromXor(int Xor) { int X = 0; int resA = 0, resB = 0; for (int i = 0; i < 7; i++) { if (Xor & (1 << i)) { X = i; resB |= 1 << i; break; } } for (int i = 0; i < 7; i++) { if (i == X) continue; if (Xor & (1 << i)) { // i-th bit in Xor is ON, so we query check if A = 0 and B = 1 or otherwise vector<int> A, B; for (int k = 0; k < components.size(); k++) { if ((k & (1 << i)) && (k & (1 << X))) { // i-th and X-th bit is ON B.emplace_back(k); } else if (!(k & (1 << i)) && !(k & (1 << X))) { A.emplace_back(k); } } if (QueryComponent(A, B)) { // A = 0 and B = 1 resB |= 1 << i; } else { resA |= 1 << i; } } else { // Check if A = B = 0 or A = B = 1 vector<int> A, B; for (int k = 0; k < components.size(); k++) { if ((k & (1 << i)) && (k & (1 << X))) { // i-th and X-th bit is ON B.emplace_back(k); } else if (!(k & (1 << i)) && !(k & (1 << X))) { A.emplace_back(k); } } if (QueryComponent(A, B)) { // A = 1 and B = 1 resA |= 1 << i; resB |= 1 << i; } } } return {resA, resB}; } void run(int N) { for (int i = 1; i <= N; i++) { components.emplace_back(vector<int>{i}); } for (int i = 1; i < N; i++) { int Xor = 0; for (int j = 0; j < 7; j++) { vector<int> A, B; for (int k = 0; k < components.size(); k++) { if (k & (1 << j)) { A.emplace_back(k); } else { B.emplace_back(k); } } if (QueryComponent(A, B)) { Xor |= 1 << j; } } // Binary Search to find edge's endpoint auto TwoComp = RecoverFromXor(Xor); auto Edge = BinarySearch(components[TwoComp.first], components[TwoComp.second], false); Answer(Edge.first, Edge.second); MergeComponent(TwoComp.first, TwoComp.second); } }

Compilation message (stderr)

icc.cpp: In function 'std::pair<int, int> BinarySearch(std::vector<int>, std::vector<int>, bool)':
icc.cpp:69:8: warning: unused variable 'res' [-Wunused-variable]
   bool res;
        ^~~
icc.cpp: In function 'std::pair<int, int> RecoverFromXor(int)':
icc.cpp:114:25: warning: comparison between signed and unsigned integer expressions [-Wsign-compare]
       for (int k = 0; k < components.size(); k++) {
                       ~~^~~~~~~~~~~~~~~~~~~
icc.cpp:128:25: warning: comparison between signed and unsigned integer expressions [-Wsign-compare]
       for (int k = 0; k < components.size(); k++) {
                       ~~^~~~~~~~~~~~~~~~~~~
icc.cpp: In function 'void run(int)':
icc.cpp:154:25: warning: comparison between signed and unsigned integer expressions [-Wsign-compare]
       for (int k = 0; k < components.size(); k++) {
                       ~~^~~~~~~~~~~~~~~~~~~
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...