Submission #221472

#TimeUsernameProblemLanguageResultExecution timeMemory
221472rama_pangWild Boar (JOI18_wild_boar)C++14
100 / 100
11017 ms593012 KiB
#include <bits/stdc++.h> using namespace std; using lint = long long; const int MAXN = 2005; const int MAXM = 4005; const int MAXL = 100005; const lint INF = 1e18; struct edge_t { int u, v, w; // u = from, v = to, w = weight edge_t() {} edge_t(int u, int v, int w) : u(u), v(v), w(w) {} }; int N, M, T, L; namespace Graph { vector<edge_t> edges; vector<int> adj[MAXN]; lint EdgeEdgeDistance[MAXM][MAXM]; // EdgeEdgeDistance[X][Y][Type] = Shortest Path from X.u to Y.v, where we use X and Y lint Distance[MAXN][MAXN][7]; // Distance[A][B][Type] = Shortest Path between Vertices A and B int FirstEdge[MAXN][MAXN][7]; // FirstEdge[A][B][Type] = first edge in the shortest path from A to B (adjacent to A) int LastEdge[MAXN][MAXN][7]; // LastEdge[A][B][Type] = last edge in the shortest path from A to B (adjacent to B) // Distance Types: // 1 The overall shortest distance, which uses (X, Y) // 2 The overall shortest distance without X and Y // 3 The overall shortest distance without X, which uses (U, V) // 4 The overall shortest distance without X and V // 5 The overall shortest distance without Y, which uses (S, E) // 6 The overall shortest distance without S and Y void Read() { M *= 2; for (int i = 0; i < (M / 2); i++) { int A, B, C; cin >> A >> B >> C; A--, B--; adj[A].emplace_back(edges.size()); edges.emplace_back(A, B, C); adj[B].emplace_back(edges.size()); edges.emplace_back(B, A, C); } } void Dijkstra(int X) { // Finds all EdgeEdgeDistance[X][] priority_queue<pair<lint, int>, vector<pair<lint, int>>, greater<pair<lint, int>>> pq; pq.emplace(edges[X].w, X); EdgeEdgeDistance[X][X] = edges[X].w; // from edges[X].u to edges[X].v // Run Dijkstra to find EdgeEdgeDistance[X][] // Make sure we do not do a U-turn while (!pq.empty()) { int cur = pq.top().second; lint cur_dist = pq.top().first; pq.pop(); if (cur_dist != EdgeEdgeDistance[X][cur]) continue; int u = edges[cur].v; for (auto nxt : adj[u]) { if (cur == (nxt ^ 1)) continue; // We cannot U-turn back lint &nxt_dist = EdgeEdgeDistance[X][nxt]; if (nxt_dist == -1 || nxt_dist > cur_dist + edges[nxt].w) { nxt_dist = cur_dist + edges[nxt].w; pq.emplace(nxt_dist, nxt); } } } } void AllPairsShortestPath() { // Compute everything involving Shortest Paths // Compute EdgeEdgeDistance[][] memset(EdgeEdgeDistance, -1, sizeof(EdgeEdgeDistance)); for (int X = 0; X < M; X++) Dijkstra(X); // Compute Distance, FirstEdge, and LastEdge memset(Distance, -1, sizeof(Distance)); memset(FirstEdge, -1, sizeof(FirstEdge)); memset(LastEdge, -1, sizeof(LastEdge)); // Compute Distance[][][1] = The overall shortest distance, which uses (X, Y) for (int X = 0; X < M; X++) { for (int Y = 0; Y < M; Y++) { if (EdgeEdgeDistance[X][Y] == -1) continue; int A = edges[X].u; int B = edges[Y].v; if (Distance[A][B][1] == -1 || Distance[A][B][1] > EdgeEdgeDistance[X][Y]) { Distance[A][B][1] = EdgeEdgeDistance[X][Y]; FirstEdge[A][B][1] = X; LastEdge[A][B][1] = Y; } } } // Compute Distance[][][2] = The overall shortest distance without X and Y for (int I = 0; I < M; I++) { for (int J = 0; J < M; J++) { int A = edges[I].u; int B = edges[J].v; int X = FirstEdge[A][B][1]; int Y = LastEdge[A][B][1]; if (I == X || J == Y) continue; if (EdgeEdgeDistance[I][J] == -1) continue; if (Distance[A][B][2] == -1 || Distance[A][B][2] > EdgeEdgeDistance[I][J]) { Distance[A][B][2] = EdgeEdgeDistance[I][J]; FirstEdge[A][B][2] = I; LastEdge[A][B][2] = J; } } } // Compute Distance[][][3] = The overall shortest distance without X, which uses (U, V) for (int U = 0; U < M; U++) { for (int V = 0; V < M; V++) { if (EdgeEdgeDistance[U][V] == -1) continue; int A = edges[U].u; int B = edges[V].v; int X = FirstEdge[A][B][1]; if (U == X) continue; if (Distance[A][B][3] == -1 || Distance[A][B][3] > EdgeEdgeDistance[U][V]) { Distance[A][B][3] = EdgeEdgeDistance[U][V]; FirstEdge[A][B][3] = U; LastEdge[A][B][3] = V; } } } // Compute Distance[][][4] = The overall shortest distance without X and V for (int I = 0; I < M; I++) { for (int J = 0; J < M; J++) { if (EdgeEdgeDistance[I][J] == -1) continue; int A = edges[I].u; int B = edges[J].v; int X = FirstEdge[A][B][1]; int V = LastEdge[A][B][3]; if (I == X || J == V) continue; if (Distance[A][B][4] == -1 || Distance[A][B][4] > EdgeEdgeDistance[I][J]) { Distance[A][B][4] = EdgeEdgeDistance[I][J]; FirstEdge[A][B][4] = I; LastEdge[A][B][4] = J; } } } // Compute Distance[][][5] = The overall shortest distance without Y, which uses (S, E) for (int S = 0; S < M; S++) { for (int E = 0; E < M; E++) { if (EdgeEdgeDistance[S][E] == -1) continue; int A = edges[S].u; int B = edges[E].v; int Y = LastEdge[A][B][1]; if (E == Y) continue; if (Distance[A][B][5] == -1 || Distance[A][B][5] > EdgeEdgeDistance[S][E]) { Distance[A][B][5] = EdgeEdgeDistance[S][E]; FirstEdge[A][B][5] = S; LastEdge[A][B][5] = E; } } } // Compute Distance[][][6] = The overall shortest distance without S and Y for (int I = 0; I < M; I++) { for (int J = 0; J < M; J++) { if (EdgeEdgeDistance[I][J] == -1) continue; int A = edges[I].u; int B = edges[J].v; int S = FirstEdge[A][B][5]; int Y = LastEdge[A][B][1]; if (I == S || J == Y) continue; if (Distance[A][B][6] == -1 || Distance[A][B][6] > EdgeEdgeDistance[I][J]) { Distance[A][B][6] = EdgeEdgeDistance[I][J]; FirstEdge[A][B][6] = I; LastEdge[A][B][6] = J; } } } } } class SegmentTree { private: struct Data { array<lint, 7> dp; // dp[Type] = Answer for supply run on current segment array<int, 7> first_edge; array<int, 7> last_edge; lint& operator [] (int i) { return dp[i]; } const lint& operator [] (int i) const { return dp[i]; } Data() { for (int i = 0; i <= 6; i++) { dp[i] = -1; first_edge[i] = -1; last_edge[i] = -1; } } Data(int u, int v) { for (int i = 1; i <= 6; i++) { dp[i] = Graph::Distance[u][v][i]; first_edge[i] = Graph::FirstEdge[u][v][i]; last_edge[i] = Graph::LastEdge[u][v][i]; } for (int i = 1; i <= 6; i++) { if (dp[i] < 0) dp[i] = INF; } } Data(Data A, Data B) { if (A[1] == -1) { *this = B; return; } if (B[1] == -1) { *this = A; return; } for (int i = 1; i <= 6; i++) dp[i] = INF; // Type 1 The overall shortest distance, which uses (X, Y) for (int P = 1; P <= 6; P++) { for (int Q = 1; Q <= 6; Q++) { if (A.last_edge[P] == (B.first_edge[Q] ^ 1)) continue; // cannot make U-turns if (dp[1] > A[P] + B[Q]) { dp[1] = A[P] + B[Q]; first_edge[1] = A.first_edge[P]; last_edge[1] = B.last_edge[Q]; } } } // Type 2 The overall shortest distance without X and Y for (int P = 1; P <= 6; P++) { for (int Q = 1; Q <= 6; Q++) { if (A.last_edge[P] == (B.first_edge[Q] ^ 1)) continue; // cannot make U-turns if (first_edge[1] == A.first_edge[P]) continue; if (last_edge[1] == B.last_edge[Q]) continue; if (dp[2] > A[P] + B[Q]) { dp[2] = A[P] + B[Q]; first_edge[2] = A.first_edge[P]; last_edge[2] = B.last_edge[Q]; } } } // Type 3 The overall shortest distance without X, which uses (U, V) for (int P = 1; P <= 6; P++) { for (int Q = 1; Q <= 6; Q++) { if (A.last_edge[P] == (B.first_edge[Q] ^ 1)) continue; // cannot make U-turns if (first_edge[1] == A.first_edge[P]) continue; if (dp[3] > A[P] + B[Q]) { dp[3] = A[P] + B[Q]; first_edge[3] = A.first_edge[P]; last_edge[3] = B.last_edge[Q]; } } } // Type 4 The overall shortest distance without X and V for (int P = 1; P <= 6; P++) { for (int Q = 1; Q <= 6; Q++) { if (A.last_edge[P] == (B.first_edge[Q] ^ 1)) continue; // cannot make U-turns if (first_edge[1] == A.first_edge[P]) continue; if (last_edge[3] == B.last_edge[Q]) continue; if (dp[4] > A[P] + B[Q]) { dp[4] = A[P] + B[Q]; first_edge[4] = A.first_edge[P]; last_edge[4] = B.last_edge[Q]; } } } // Type 5 The overall shortest distance without Y, which uses (S, E) for (int P = 1; P <= 6; P++) { for (int Q = 1; Q <= 6; Q++) { if (A.last_edge[P] == (B.first_edge[Q] ^ 1)) continue; // cannot make U-turns if (last_edge[1] == B.last_edge[Q]) continue; if (dp[5] > A[P] + B[Q]) { dp[5] = A[P] + B[Q]; first_edge[5] = A.first_edge[P]; last_edge[5] = B.last_edge[Q]; } } } // Type 6 The overall shortest distance without S and Y for (int P = 1; P <= 6; P++) { for (int Q = 1; Q <= 6; Q++) { if (A.last_edge[P] == (B.first_edge[Q] ^ 1)) continue; // cannot make U-turns if (first_edge[5] == A.first_edge[P]) continue; if (last_edge[1] == B.last_edge[Q]) continue; if (dp[6] > A[P] + B[Q]) { dp[6] = A[P] + B[Q]; first_edge[6] = A.first_edge[P]; last_edge[6] = B.last_edge[Q]; } } } } }; int sz; vector<Data> Tree; vector<int> X; // Supply Plan void Update(int pos, int u, int v) { Tree[pos += sz] = Data(u, v); for (pos /= 2; pos > 0; pos /= 2) { Tree[pos] = Data(Tree[pos * 2], Tree[pos * 2 + 1]); } } Data Query(int L, int R) { Data left, right; for (L += sz, R += sz; L < R; L /= 2, R /= 2) { if (L & 1) left = Data(left, Tree[L++]); if (R & 1) right = Data(Tree[--R], right); } return Data(left, right); } public: SegmentTree(vector<int> X) : X(X) { sz = (int) X.size() - 1; Tree.resize(2 * sz); for (int i = 0; i < sz; i++) { Tree[i + sz] = Data(X[i], X[i + 1]); } for (int i = sz - 1; i > 0; i--) { Tree[i] = Data(Tree[i * 2], Tree[i * 2 + 1]); } } void Update(int P, int Q) { X[P] = Q; if (P > 0) Update(P - 1, X[P - 1], X[P]); if (P < sz) Update(P, X[P], X[P + 1]); } lint Query() { lint res = Query(0, sz).dp[1]; if (res == INF) res = -1; return res; } }; void Solve() { vector<int> X(L); for (int i = 0; i < L; i++) { cin >> X[i]; X[i]--; } SegmentTree Solver(X); for (int i = 0; i < T; i++) { int P, Q; cin >> P >> Q; Solver.Update(--P, --Q); cout << Solver.Query() << "\n"; } } int main() { ios::sync_with_stdio(0); cin.tie(0), cout.tie(0); cin >> N >> M >> T >> L; Graph::Read(); Graph::AllPairsShortestPath(); Solve(); return 0; }
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...