답안 #219692

# 제출 시각 아이디 문제 언어 결과 실행 시간 메모리
219692 2020-04-06T01:27:38 Z rama_pang Bitaro, who Leaps through Time (JOI19_timeleap) C++14
100 / 100
722 ms 58360 KB
#include <bits/stdc++.h>
using namespace std;
const int INF = 1e8;

class TimeLeap { // segment tree
 private:
  struct Node {
    bool collision;
    
    int st, et; // interval where if we start in the beginning of the segment in this time interval, we do not need to 
                // timeleap at all until the collision

    long long timeleap; // the number of timeleaps needed to get from just the collision to the end of the segment. We 
                        // start at et if we collide with an L, or start at st if we collide with an R. Note that this 
                        // start points will be travelled through no matter what.

    int endtime; // endtime if there is a collision (since if there is, the endtime is forced)

    Node() {}
    Node(bool c, int s, int e, long long t, int et) : collision(c), st(s), et(e), timeleap(t), endtime(et) {}

    long long Travel(int &t) { // how many timeleaps are needed (note that t is modified to become the final time)
      long long res;
      if (!collision) { // we do not need to timeleap once we are in interval [st, et]
        if (t > et) { // travel back to et, then we do not need to timeleap again 
                      // (this is optimal since et is the last time where we do not need to timleap)
          res = t - et;
          t = et;
        } else { // we do not need to timeleap
          res = 0;
          t = max(t, st);
        }
      } else { // we collideR, so we first go to st/et from before collision then adding the rest of timeleaps
        res = max(t - st, 0) + timeleap;
        t = endtime;
      }
      return res;
    }

    friend Node merge(Node a, Node b) {
      Node res;
      if (!a.collision && !b.collision) {
        if (max(a.st, b.st) <= min(a.et, b.et)) { // no collision
          res = Node(false, max(a.st, b.st), min(a.et, b.et), 0, -1);
        } else if (a.et < b.st) { // there is a new collision with L
          res.collision = true;
          res.st = res.et = res.endtime = a.et;
          res.timeleap = b.Travel(res.endtime);
        } else if (a.st > b.et) { // there is a new collision with R
          res.collision = true;
          res.st = res.et = res.endtime = a.st;
          res.timeleap = b.Travel(res.endtime);
        } 
      } else if (a.collision) { // we collide in a first, so we simply add b to the answer if we travel from a.endtime
        res = a;
        res.timeleap += b.Travel(res.endtime);
      } else if (b.collision) { // we collide in b first
        res = b;
        if (a.et < b.st) {
          res.st = res.et = res.endtime = a.et;
          res.timeleap = b.Travel(res.endtime);
        } else if (a.st > b.st) {
          res.st = res.et = res.endtime = a.st;
          res.timeleap = b.Travel(res.endtime);
        }
      }
      return res;
    }
  };

  int sz;
  vector<Node> tree;

  void Update(int n, int tl, int tr, int pos, int newL, int newR) {
    if (tl == tr) return void(tree[n] = Node(false, newL, newR, 0, -1));
    int mid = (tl + tr) / 2;
    int lc = n + 1;
    int rc = n + 2 * (mid - tl + 1);
    if (pos <= mid) {
      Update(lc, tl, mid, pos, newL, newR);
    } else {
      Update(rc, mid + 1, tr, pos, newL, newR);
    }
    tree[n] = merge(tree[lc], tree[rc]);
  }

  long long Query(int n, int tl, int tr, int l, int r, int &t) {
    if (tr < l || r < tl || tl > tr || l > r) return 0;
    if (l <= tl && tr <= r) return tree[n].Travel(t);
    int mid = (tl + tr) / 2;
    int lc = n + 1;
    int rc = n + 2 * (mid - tl + 1);
    long long res = 0;
    res += Query(lc, tl, mid, l, r, t);
    res += Query(rc, mid + 1, tr, l, r, t);
    return res;
  }

 public:
  TimeLeap(int n) : sz(n) {
    tree.resize(2 * sz);
  }

  void Update(int pos, int newL, int newR) {
    return Update(1, 0, sz - 1, pos, newL, newR);
  }

  long long Query(int l, int r, int &t) {
    return Query(1, 0, sz - 1, l, r, t);
  }  
};

int main() {
  ios::sync_with_stdio(0);
  cin.tie(0), cout.tie(0);

  int N, Q;
  cin >> N >> Q;
  N--;

  TimeLeap Left(N), Right(N);

  auto Update = [&](int pos, int newL, int newR) {
    Left.Update(pos, newL - pos, newR - pos - 1);
    pos = N - pos - 1;
    Right.Update(pos, newL - pos, newR - pos - 1);
  };

  auto Query = [&](int l, int r, int t1, int t2) {
    if (l == r) {
      return (long long) max(t1 - t2, 0);
    } else if (l < r) {
      t1 -= l, t2 -= r;
      long long res = Left.Query(l, --r, t1);
      return res + max(t1 - t2, 0);
    } else if (l > r) {
      l = N - l, r = N - r;
      t1 -= l, t2 -= r;
      long long res = Right.Query(l, --r, t1);
      return res + max(t1 - t2, 0);
    }
  };

  for (int i = 0; i < N; i++) {
    int L, R;
    cin >> L >> R;
    Update(i, L, R);
  }

  for (int i = 0; i < Q; i++) {
    int T;
    cin >> T;
    if (T == 1) {
      int P, S, E;
      cin >> P >> S >> E;
      Update(--P, S, E);
    } else if (T == 2) {
      int A, B, C, D;
      cin >> A >> B >> C >> D;
      cout << Query(--A, --C, B, D) << "\n";
    }
  }

  return 0;
}

Compilation message

timeleap.cpp: In lambda function:
timeleap.cpp:142:3: warning: control reaches end of non-void function [-Wreturn-type]
   };
   ^
# 결과 실행 시간 메모리 Grader output
1 Correct 5 ms 384 KB Output is correct
2 Correct 5 ms 384 KB Output is correct
3 Correct 5 ms 384 KB Output is correct
4 Correct 5 ms 384 KB Output is correct
5 Correct 5 ms 384 KB Output is correct
6 Correct 5 ms 384 KB Output is correct
7 Correct 5 ms 384 KB Output is correct
8 Correct 4 ms 384 KB Output is correct
9 Correct 5 ms 384 KB Output is correct
10 Correct 4 ms 384 KB Output is correct
11 Correct 6 ms 512 KB Output is correct
12 Correct 6 ms 512 KB Output is correct
13 Correct 6 ms 512 KB Output is correct
14 Correct 6 ms 512 KB Output is correct
15 Correct 6 ms 512 KB Output is correct
16 Correct 7 ms 640 KB Output is correct
17 Correct 6 ms 512 KB Output is correct
18 Correct 6 ms 512 KB Output is correct
19 Correct 6 ms 512 KB Output is correct
20 Correct 6 ms 512 KB Output is correct
21 Correct 6 ms 512 KB Output is correct
22 Correct 6 ms 512 KB Output is correct
23 Correct 6 ms 512 KB Output is correct
24 Correct 6 ms 512 KB Output is correct
25 Correct 6 ms 512 KB Output is correct
26 Correct 6 ms 512 KB Output is correct
27 Correct 6 ms 512 KB Output is correct
28 Correct 7 ms 512 KB Output is correct
29 Correct 7 ms 512 KB Output is correct
30 Correct 6 ms 512 KB Output is correct
31 Correct 6 ms 512 KB Output is correct
32 Correct 6 ms 512 KB Output is correct
33 Correct 6 ms 512 KB Output is correct
34 Correct 6 ms 512 KB Output is correct
35 Correct 6 ms 512 KB Output is correct
36 Correct 6 ms 512 KB Output is correct
37 Correct 6 ms 512 KB Output is correct
38 Correct 7 ms 512 KB Output is correct
39 Correct 6 ms 512 KB Output is correct
40 Correct 6 ms 512 KB Output is correct
41 Correct 5 ms 384 KB Output is correct
# 결과 실행 시간 메모리 Grader output
1 Correct 666 ms 54548 KB Output is correct
2 Correct 641 ms 52088 KB Output is correct
3 Correct 631 ms 52600 KB Output is correct
4 Correct 626 ms 51192 KB Output is correct
5 Correct 675 ms 54392 KB Output is correct
6 Correct 658 ms 53760 KB Output is correct
7 Correct 644 ms 55072 KB Output is correct
8 Correct 682 ms 57080 KB Output is correct
9 Correct 640 ms 51960 KB Output is correct
10 Correct 655 ms 54904 KB Output is correct
11 Correct 666 ms 54520 KB Output is correct
12 Correct 682 ms 57592 KB Output is correct
13 Correct 682 ms 58360 KB Output is correct
14 Correct 5 ms 384 KB Output is correct
# 결과 실행 시간 메모리 Grader output
1 Correct 5 ms 384 KB Output is correct
2 Correct 5 ms 384 KB Output is correct
3 Correct 5 ms 384 KB Output is correct
4 Correct 5 ms 384 KB Output is correct
5 Correct 5 ms 384 KB Output is correct
6 Correct 5 ms 384 KB Output is correct
7 Correct 5 ms 384 KB Output is correct
8 Correct 4 ms 384 KB Output is correct
9 Correct 5 ms 384 KB Output is correct
10 Correct 4 ms 384 KB Output is correct
11 Correct 6 ms 512 KB Output is correct
12 Correct 6 ms 512 KB Output is correct
13 Correct 6 ms 512 KB Output is correct
14 Correct 6 ms 512 KB Output is correct
15 Correct 6 ms 512 KB Output is correct
16 Correct 7 ms 640 KB Output is correct
17 Correct 6 ms 512 KB Output is correct
18 Correct 6 ms 512 KB Output is correct
19 Correct 6 ms 512 KB Output is correct
20 Correct 6 ms 512 KB Output is correct
21 Correct 6 ms 512 KB Output is correct
22 Correct 6 ms 512 KB Output is correct
23 Correct 6 ms 512 KB Output is correct
24 Correct 6 ms 512 KB Output is correct
25 Correct 6 ms 512 KB Output is correct
26 Correct 6 ms 512 KB Output is correct
27 Correct 6 ms 512 KB Output is correct
28 Correct 7 ms 512 KB Output is correct
29 Correct 7 ms 512 KB Output is correct
30 Correct 6 ms 512 KB Output is correct
31 Correct 6 ms 512 KB Output is correct
32 Correct 6 ms 512 KB Output is correct
33 Correct 6 ms 512 KB Output is correct
34 Correct 6 ms 512 KB Output is correct
35 Correct 6 ms 512 KB Output is correct
36 Correct 6 ms 512 KB Output is correct
37 Correct 6 ms 512 KB Output is correct
38 Correct 7 ms 512 KB Output is correct
39 Correct 6 ms 512 KB Output is correct
40 Correct 6 ms 512 KB Output is correct
41 Correct 5 ms 384 KB Output is correct
42 Correct 666 ms 54548 KB Output is correct
43 Correct 641 ms 52088 KB Output is correct
44 Correct 631 ms 52600 KB Output is correct
45 Correct 626 ms 51192 KB Output is correct
46 Correct 675 ms 54392 KB Output is correct
47 Correct 658 ms 53760 KB Output is correct
48 Correct 644 ms 55072 KB Output is correct
49 Correct 682 ms 57080 KB Output is correct
50 Correct 640 ms 51960 KB Output is correct
51 Correct 655 ms 54904 KB Output is correct
52 Correct 666 ms 54520 KB Output is correct
53 Correct 682 ms 57592 KB Output is correct
54 Correct 682 ms 58360 KB Output is correct
55 Correct 5 ms 384 KB Output is correct
56 Correct 670 ms 51120 KB Output is correct
57 Correct 643 ms 48504 KB Output is correct
58 Correct 677 ms 52344 KB Output is correct
59 Correct 676 ms 52472 KB Output is correct
60 Correct 653 ms 49272 KB Output is correct
61 Correct 722 ms 53808 KB Output is correct
62 Correct 680 ms 53624 KB Output is correct
63 Correct 684 ms 53496 KB Output is correct
64 Correct 691 ms 53972 KB Output is correct
65 Correct 667 ms 51704 KB Output is correct
66 Correct 663 ms 51832 KB Output is correct
67 Correct 681 ms 53496 KB Output is correct
68 Correct 620 ms 49656 KB Output is correct
69 Correct 677 ms 54776 KB Output is correct
70 Correct 647 ms 49656 KB Output is correct
71 Correct 646 ms 47608 KB Output is correct
72 Correct 647 ms 49404 KB Output is correct
73 Correct 678 ms 53616 KB Output is correct
74 Correct 693 ms 54008 KB Output is correct
75 Correct 677 ms 54520 KB Output is correct
76 Correct 688 ms 55160 KB Output is correct
77 Correct 5 ms 384 KB Output is correct