Submission #218918

#TimeUsernameProblemLanguageResultExecution timeMemory
218918rama_pangTwo Dishes (JOI19_dishes)C++14
0 / 100
991 ms1048580 KiB
#include <bits/stdc++.h> using namespace std; using lint = long long; const lint INF = 1e18; class SegmentTree { private: // We keep dp[n] = tree[n] + transition[n], to be able to do updates quickly int sz; vector<lint> tree; vector<lint> lazy_sum; vector<lint> lazy_max; vector<lint> transition; void Push(int n) { for (int c = 0; c < 2; c++) { tree[n * 2 + c] += lazy_sum[n]; lazy_sum[n * 2 + c] += lazy_sum[n]; lazy_max[n * 2 + c] += lazy_sum[n]; tree[n * 2 + c] = max(tree[n * 2 + c], lazy_max[n]); lazy_max[n * 2 + c] = max(lazy_max[n * 2 + c], lazy_max[n]); } lazy_max[n] = -INF; lazy_sum[n] = 0; } void RangeSumUpdate(int n, int tl, int tr, int l, int r, lint x, bool update_tree) { if (r < tl || tr < l || tl > tr || l > r) return; if (l <= tl && tr <= r) { if (update_tree) { tree[n] += x; lazy_sum[n] += x; lazy_max[n] += x; } else { transition[n] += x; } return; } Push(n); int mid = (tl + tr) / 2; RangeSumUpdate(n * 2, tl, mid, l, r, x, update_tree); RangeSumUpdate(n * 2 + 1, mid + 1, tr, l, r, x, update_tree); } void RangeMaximumUpdate(int n, int tl, int tr, int l, int r, lint x) { if (r < tl || tr < l || tl > tr || l > r) return; if (l <= tl && tr <= r) { tree[n] = max(tree[n], x); lazy_max[n] = max(lazy_max[n], x); return; } Push(n); int mid = (tl + tr) / 2; RangeMaximumUpdate(n * 2, tl, mid, l, r, x); RangeMaximumUpdate(n * 2 + 1, mid + 1, tr, l, r, x); } lint QueryTree(int n, int tl, int tr, int pos) { if (tl == tr) return tree[n]; // dp[] = tree[] + transition[] Push(n); int mid = (tl + tr) / 2; if (pos <= mid) { return QueryTree(n * 2, tl, mid, pos); } else { return QueryTree(n * 2 + 1, mid + 1, tr, pos); } } lint Query(int n, int tl, int tr, int pos) { if (tl == tr) return tree[n] + transition[n]; // dp[] = tree[] + transition[] Push(n); int mid = (tl + tr) / 2; if (pos <= mid) { return transition[n] + Query(n * 2, tl, mid, pos); } else { return transition[n] + Query(n * 2 + 1, mid + 1, tr, pos); } } public: SegmentTree(int n) : sz(n) { tree.assign(4 * sz, 0); lazy_sum.assign(4 * sz, 0); lazy_max.assign(4 * sz, -INF); transition.assign(4 * sz, 0); } void UpdateSumTree(int l, int r, lint x) { // range sum update on dp return RangeSumUpdate(1, 0, sz - 1, l, r, x, true); } void UpdateTransition(int l, int r, lint x) { // range sum update on transition return RangeSumUpdate(1, 0, sz - 1, l, r, x, false); } void UpdateMaximumTree(int l, int r, lint x) { // dp[k] = max(dp[k], transition[k] + x), x = dp[0], for all nodes return RangeMaximumUpdate(1, 0, sz - 1, l, r, x); } lint QueryTree(int pos) { return QueryTree(1, 0, sz - 1, pos); } lint Query(int pos) { return Query(1, 0, sz - 1, pos); } }; int N, M; vector<int> X; // X[i] = maximum index j, such that A[1] + A[2] + ... + A[i] + B[1] + B[2] + ... + B[j] <= S[i] vector<int> Y; // Y[j] = maximum index i, such that A[1] + A[2] + ... + A[i] + B[1] + B[2] + ... + B[j] <= T[j] vector<int> P; vector<int> Q; lint NaiveDP(bool dbg = false) { vector<vector<lint>> dp(N + 1, vector<lint>(M + 1, -INF)); dp[0][0] = 0; for (int i = 0; i <= N; i++) { for (int j = 0; j <= M; j++) { if (j < M) dp[i][j + 1] = max(dp[i][j + 1], dp[i][j] + (i <= Y[j + 1] ? Q[j + 1] : 0)); if (i < N) dp[i + 1][j] = max(dp[i + 1][j], dp[i][j] + (j <= X[i + 1] ? P[i + 1] : 0)); } } if (dbg) { for (int i = 0; i <= N; i++) { for (int j = 0; j <= M; j++) { cout << dp[i][j] << " \n"[j == M]; } } } return dp[N][M]; } lint SegmentTreeDP() { SegmentTree seg(M + 1); vector<vector<int>> deactivate(N + 2); // deactivate Q[j] at row i for (int j = 1; j <= M; j++) { if (0 <= Y[j]) { seg.UpdateTransition(j, M, Q[j]); deactivate[Y[j]].emplace_back(j); } } for (int i = 0; i <= N; i++) { seg.UpdateSumTree(0, X[i], P[i]); seg.UpdateMaximumTree(X[i] + 1, M, seg.QueryTree(X[i])); // maintain monotonicity sort(begin(deactivate[i]), end(deactivate[i])); for (auto &j : deactivate[i]) { seg.UpdateTransition(j, M, -Q[j]); seg.UpdateSumTree(j, M, Q[j]); // make tree[] monotone again, by range maximum update on tree. // This simulates the transition dp[i][j + 1] from dp[i][j] // As only the values [j + 1, M] changes, we only need to compare // it with the value at [j]. seg.UpdateMaximumTree(j, M, seg.QueryTree(j - 1)); } // for (int j = 0; j <= M; j++) { // cout << seg.Query(j) << " \n"[j == M]; // } } return seg.Query(M); } mt19937 rnd(chrono::high_resolution_clock::now().time_since_epoch().count()); void Read() { ios::sync_with_stdio(0); cin.tie(0), cout.tie(0); cin >> N >> M; // N = 10, M = 10; vector<int> A(N + 1), B(M + 1); vector<lint> S(N + 1), T(M + 1); P.resize(N + 1), Q.resize(M + 1); X.resize(N + 1), Y.resize(M + 1); for (int i = 1; i <= N; i++) { // A[i] = rnd() % 100; // S[i] = rnd() % 1000; // P[i] = rnd() % 100; cin >> A[i] >> S[i] >> P[i]; A[i] += A[i - 1]; } for (int i = 1; i <= M; i++) { // B[i] = rnd() % 100; // T[i] = rnd() % 1000; // Q[i] = rnd() % 100; cin >> B[i] >> T[i] >> Q[i]; B[i] += B[i - 1]; } for (int i = 0; i <= N; i++) { X[i] = upper_bound(begin(B), end(B), S[i] - A[i]) - begin(B) - 1; } for (int i = 0; i <= M; i++) { Y[i] = upper_bound(begin(A), end(A), T[i] - B[i]) - begin(A) - 1; } } int main() { Read(); cout << NaiveDP() << "\n"; // cout << SegmentTreeDP() << "\n"; return 0; }
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...