Submission #217792

# Submission time Handle Problem Language Result Execution time Memory
217792 2020-03-30T18:47:54 Z MarcoMeijer Werewolf (IOI18_werewolf) C++14
100 / 100
812 ms 129800 KB
#include "werewolf.h"
#include <bits/stdc++.h>
using namespace std;

//macros
typedef long long ll;
typedef pair<int, int> ii;
typedef tuple<int, int, int> iii;
typedef vector<int> vi;
typedef vector<ii> vii;
typedef vector<iii> viii;
typedef vector<ll> vll;
#define REP(a,b,c) for(int a=int(b); a<int(c); a++)
#define RE(a,c) REP(a,0,c)
#define RE1(a,c) REP(a,1,c+1)
#define REI(a,b,c) REP(a,b,c+1)
#define REV(a,b,c) for(int a=int(c-1); a>=int(b); a--)
#define INF 1e9
#define pb push_back
#define fi first
#define se second
#define sz size()
mt19937 rng(chrono::steady_clock::now().time_since_epoch().count());

const int MX=5e5;

class RootedTree {
public:
	RootedTree() {
		RE(i,MX) p[i] = -1;
	}
	void addChild(int parent, int child) {
		chl[parent].pb(child);
		p[child] = parent;
	}
	void createA(int u) {
		a[m] = u;
		bg[u] = m++;
		for(int v:chl[u]) createA(v);
		ed[u] = m-1;
	}
	void createA() {
		createA(root);
	}

	vi chl[MX];
	int p[MX];
	int root;
	int a[MX], bg[MX], ed[MX];
	int m=0;
};

int m, q, n;
vi adj[MX];
vi atL[MX], atR[MX];
vi A, X, Y, S, E, L, R;
int p[MX], r[MX];
RootedTree treeH, treeW;
int SEG[MX*4];
int SA[MX];

int getSet(int i) {return i==p[i]?i:p[i]=getSet(p[i]);}
bool isSameSet(int i, int j) {return getSet(i)==getSet(j);}
void unionSet(int i, int j) {
	if(!isSameSet(i,j)) {
		i=getSet(i), j=getSet(j);
		p[j] = i;
	}
}

void setSeg(int i, int x, int p=0, int l=0, int r=n-1) {
	if(i < l || i > r) return;
	if(l == r) {
		SEG[p] = x;
		return;
	}
	int m=(l+r)/2;
	setSeg(i,x,p*2+1,l,m);
	setSeg(i,x,p*2+2,m+1,r);
	SEG[p] = max(SEG[p*2+1], SEG[p*2+2]);
}
int getSeg(int i, int j, int p=0, int l=0, int r=n-1) {
	if(j < l || i > r) return -1;
	if(i <= l && j >= r) return SEG[p];
	int m=(l+r)/2;
	int a=getSeg(i,j,p*2+1,l,m);
	int b=getSeg(i,j,p*2+2,m+1,r);
	return max(a,b);
}

vi check_validity(int N, vi _X, vi _Y, vi _S, vi _E, vi _L, vi _R) {
	n = N;
	m = _X.size();
	q = _S.size();
	L=_L, R=_R, X=_X, Y=_Y, S=_S, E=_E;
	A.assign(q, 0);
	RE(i,m) {
		adj[X[i]].pb(Y[i]);
		adj[Y[i]].pb(X[i]);
	}

	RE(i,q) {
		atL[L[i]].pb(i);
		atR[R[i]].pb(i);
	}

	RE(i,n) p[i]=i, r[i]=0;
	RE(i,n) {
		for(int j:adj[i]) {
			if(j > i || isSameSet(i,j)) continue;
			j = getSet(j);
			unionSet(i,j);
			treeW.addChild(i,j);
		}
		for(int j:atR[i]) E[j] = getSet(E[j]);
	}
	treeW.root = n-1;
	RE(i,n) p[i]=i, r[i]=0;
	REV(i,0,n) {
		for(int j:adj[i]) {
			if(j < i ||isSameSet(i,j)) continue;
			j = getSet(j);
			unionSet(i,j);
			treeH.addChild(i,j);
		}
		for(int j:atL[i]) S[j] = getSet(S[j]);
	}
	treeH.root = 0;
	treeW.createA();
	treeH.createA();

	viii queries;
	RE(curQ,q) {
		int bg, ed;
		int u = S[curQ];
		bg = treeH.bg[u];
		ed = treeH.ed[u];
		queries.pb(tie(ed,bg,curQ));
	}
	sort(queries.begin(), queries.end());
	RE(i,n*4) SEG[i] = -1;
	RE(i,n) SA[treeW.a[i]] = i;

	int j=0;
	for(iii p : queries) {
		int bg, ed, curQ;
		tie(ed, bg, curQ) = p;
		while(j <= ed) {
			setSeg(SA[treeH.a[j]],j);
			j++;
		}
		int u = E[curQ];
		if(getSeg(treeW.bg[u], treeW.ed[u]) >= bg) {
			A[curQ] = 1;
		} else {
			A[curQ] = 0;
		}
	}

	return A;
}
# Verdict Execution time Memory Grader output
1 Correct 40 ms 63104 KB Output is correct
2 Correct 43 ms 63104 KB Output is correct
3 Correct 40 ms 63096 KB Output is correct
4 Correct 68 ms 62976 KB Output is correct
5 Correct 41 ms 62976 KB Output is correct
6 Correct 47 ms 62968 KB Output is correct
7 Correct 40 ms 62972 KB Output is correct
8 Correct 40 ms 63104 KB Output is correct
9 Correct 41 ms 62976 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 40 ms 63104 KB Output is correct
2 Correct 43 ms 63104 KB Output is correct
3 Correct 40 ms 63096 KB Output is correct
4 Correct 68 ms 62976 KB Output is correct
5 Correct 41 ms 62976 KB Output is correct
6 Correct 47 ms 62968 KB Output is correct
7 Correct 40 ms 62972 KB Output is correct
8 Correct 40 ms 63104 KB Output is correct
9 Correct 41 ms 62976 KB Output is correct
10 Correct 52 ms 63992 KB Output is correct
11 Correct 48 ms 63864 KB Output is correct
12 Correct 47 ms 63864 KB Output is correct
13 Correct 48 ms 63992 KB Output is correct
14 Correct 55 ms 63992 KB Output is correct
15 Correct 47 ms 63996 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 717 ms 120680 KB Output is correct
2 Correct 695 ms 122500 KB Output is correct
3 Correct 672 ms 121220 KB Output is correct
4 Correct 690 ms 120676 KB Output is correct
5 Correct 725 ms 120692 KB Output is correct
6 Correct 761 ms 120704 KB Output is correct
7 Correct 626 ms 118376 KB Output is correct
8 Correct 660 ms 122728 KB Output is correct
9 Correct 613 ms 120160 KB Output is correct
10 Correct 576 ms 119324 KB Output is correct
11 Correct 595 ms 119652 KB Output is correct
12 Correct 635 ms 120548 KB Output is correct
13 Correct 665 ms 127316 KB Output is correct
14 Correct 656 ms 127460 KB Output is correct
15 Correct 665 ms 127276 KB Output is correct
16 Correct 645 ms 127332 KB Output is correct
17 Correct 626 ms 118236 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 40 ms 63104 KB Output is correct
2 Correct 43 ms 63104 KB Output is correct
3 Correct 40 ms 63096 KB Output is correct
4 Correct 68 ms 62976 KB Output is correct
5 Correct 41 ms 62976 KB Output is correct
6 Correct 47 ms 62968 KB Output is correct
7 Correct 40 ms 62972 KB Output is correct
8 Correct 40 ms 63104 KB Output is correct
9 Correct 41 ms 62976 KB Output is correct
10 Correct 52 ms 63992 KB Output is correct
11 Correct 48 ms 63864 KB Output is correct
12 Correct 47 ms 63864 KB Output is correct
13 Correct 48 ms 63992 KB Output is correct
14 Correct 55 ms 63992 KB Output is correct
15 Correct 47 ms 63996 KB Output is correct
16 Correct 717 ms 120680 KB Output is correct
17 Correct 695 ms 122500 KB Output is correct
18 Correct 672 ms 121220 KB Output is correct
19 Correct 690 ms 120676 KB Output is correct
20 Correct 725 ms 120692 KB Output is correct
21 Correct 761 ms 120704 KB Output is correct
22 Correct 626 ms 118376 KB Output is correct
23 Correct 660 ms 122728 KB Output is correct
24 Correct 613 ms 120160 KB Output is correct
25 Correct 576 ms 119324 KB Output is correct
26 Correct 595 ms 119652 KB Output is correct
27 Correct 635 ms 120548 KB Output is correct
28 Correct 665 ms 127316 KB Output is correct
29 Correct 656 ms 127460 KB Output is correct
30 Correct 665 ms 127276 KB Output is correct
31 Correct 645 ms 127332 KB Output is correct
32 Correct 626 ms 118236 KB Output is correct
33 Correct 703 ms 120804 KB Output is correct
34 Correct 429 ms 105600 KB Output is correct
35 Correct 726 ms 122808 KB Output is correct
36 Correct 682 ms 121064 KB Output is correct
37 Correct 706 ms 121964 KB Output is correct
38 Correct 701 ms 121516 KB Output is correct
39 Correct 674 ms 127224 KB Output is correct
40 Correct 805 ms 129800 KB Output is correct
41 Correct 680 ms 121576 KB Output is correct
42 Correct 629 ms 119908 KB Output is correct
43 Correct 812 ms 127976 KB Output is correct
44 Correct 703 ms 121900 KB Output is correct
45 Correct 631 ms 126440 KB Output is correct
46 Correct 638 ms 126184 KB Output is correct
47 Correct 665 ms 127660 KB Output is correct
48 Correct 657 ms 127464 KB Output is correct
49 Correct 665 ms 127592 KB Output is correct
50 Correct 655 ms 127332 KB Output is correct
51 Correct 748 ms 127588 KB Output is correct
52 Correct 753 ms 127588 KB Output is correct