이 제출은 이전 버전의 oj.uz에서 채점하였습니다. 현재는 제출 당시와는 다른 서버에서 채점을 하기 때문에, 다시 제출하면 결과가 달라질 수도 있습니다.
#include <bits/stdc++.h>
using namespace std;
const int MOD = 1e9 + 7;
int ADD() { return 0; }
int MUL() { return 1; }
template<typename... Tail> int ADD(int H, Tail... T) {
return ((H += ADD(T...)) >= MOD) ? H - MOD : H;
}
template<typename...Tail> int MUL(int H, Tail...T) {
return 1ll * H * MUL(T...) % MOD;
}
const int MAXN = 1205;
int N;
int A[MAXN];
bool is_special[MAXN];
int C[MAXN][MAXN]; // binomial coefficent
int ways[MAXN][MAXN];
int total_ways[MAXN];
int dp[MAXN][MAXN];
void Read() {
cin >> N;
for (int i = 1; i <= N; i++) {
cin >> A[i];
is_special[A[i]] = true;
}
}
void InitBinomial() {
C[0][0] = 1;
for (int i = 1; i <= 2 * N; i++) {
for (int j = 0; j <= i; j++) {
C[i][j] = ADD(C[i - 1][j], (j > 0 ? C[i - 1][j - 1] : 0));
}
}
}
void CountWays() {
for (int l = 1; l <= N; l++) {
// ways[i][j] = number of ways of choosing and permuting j integers from the set {1, 1, 2, 2, ..., i, i}
// (each element appears twice), such that the first element is l, and the following holds: p[i] >= i if
// we sort p, where p is the permutation chosen.
ways[0][1] = 2; // the element l is already in the front of the set, of which there are two kinds
for (int i = 1; i <= N; i++) { // we consider placing element i into the set
for (int j = 0; j <= i; j++) { // the number of elements that we have picked.
// Note that i >= j always holds, and since j is the current position index and i is the element,
// p[i] >= i holds when sorted.
ways[i][j] = 0; // reset
if (i == l) {
ways[i][j] = ADD(ways[i][j], ways[i - 1][j]); // we place element l into the front, of which there remains only one kind
if (j >= 1) {
ways[i][j] = ADD(ways[i][j], MUL(ways[i - 1][j - 1], j - 1)); // we place one of element l in one of the gaps
}
} else {
ways[i][j] = ADD(ways[i][j], ways[i - 1][j]); // we do not place element i into the set
if (j >= 1) {
// We place a single element i into the set. Since we consider two pillars with height i different,
// we multiply it by 2. We can place the new element to j positions relative to the elements currently
// inside (ways[i - 1] have j - 1 elements, and there are j gaps between these elements that we can
// place the new element into). However, because we have already placed element l in the front, we cannot
// place i in the front, so the possible gaps decrease by 1.
ways[i][j] = ADD(ways[i][j], MUL(2, ways[i - 1][j - 1], j - 1));
}
if (j >= 2) {
ways[i][j] = ADD(ways[i][j], MUL(ways[i - 1][j - 2], j - 2, 2)); // we place both elements in the same gap. We can permute the new elements by 2!, so we multiply it by 2.
ways[i][j] = ADD(ways[i][j], MUL(ways[i - 1][j - 2], j - 2, j - 3)); // we place both elements in different gaps
}
}
}
}
for (int i = l; i <= N; i++) {
total_ways[i] = ADD(total_ways[i], ways[i][i]); // ways[l][k][k] contributes to total_ways[k], since total_ways[k] = sum of ways[l][k][k] for l = 1, 2, ..., k.
}
}
}
void CalculateDP() {
dp[2 * N][0] = 1; // dp[pos][height] = we have placed special pillars of height 1, 2, 3, ..., height and all pillars pos + 1, pos + 2, ..., 2N
int special = 0, non_special = 0; // count special and non-special positions that we have encountered
for (int pos = 2 * N; pos >= 1; pos--) {
if (is_special[pos]) { // now current pillar is special
for (int new_height = 0; new_height <= N; new_height++) { // new bound
dp[pos - 1][new_height] = ADD(dp[pos - 1][new_height], dp[pos][new_height]); // we leave the current special pillar slot unfilled
for (int cur_height = 0; cur_height < min(new_height, special + 1); cur_height++) {
// we fill the special pillar slot, and since we have filled exactly cur_height special positions, there are
// special - cur_height positions left. Since we add (add) new special pillars, and one of them must be at
// current position, we multiply it by C[special - cur_height][add - 1].
int add = new_height - cur_height;
dp[pos - 1][new_height] = ADD(dp[pos - 1][new_height], MUL(dp[pos][cur_height], C[special - cur_height][add - 1], total_ways[add]));
// we place a special pillar of height cur_height + 1 at the current position, to avoid double counting.
// The number of ways to achieve this is total_ways[add] = for all l = 1...add, if we place l at the front,
// how many ways are there to get a valid sequence that after earthqueakes, elements 1, 2, ..., add are left,
// such that the first element is 1? Since the final height of the first element is 1, it corresponds to
// the final height of the pillar at the current position as cur_hegiht + 1 (since we are adding pillars with
// height cur_height + 1, cur_height + 2, ..., final_height).
}
}
special++;
} else { // current pillar is not special
for (int j = non_special; j <= special; j++) {
// we have (j - non_special) pillars we can add without breaking rules (since adding a pillar of new height means
// that pillar must be special (and this location is not), we cannot place a new height).
dp[pos - 1][j] = MUL(dp[pos][j], j - non_special);
}
non_special++;
}
}
}
int Answer() {
int res = dp[0][N];
for (int i = 0; i < N; i++) {
if (res & 1) res += MOD;
res /= 2; // we previoiusly considered 2 pillars with the same height different, but in actuality they are the same. Thus we divide everything by 2^N
}
return res;
}
int main() {
Read();
InitBinomial();
CountWays();
CalculateDP();
cout << Answer() << "\n";
return 0;
}
# | Verdict | Execution time | Memory | Grader output |
---|
Fetching results... |
# | Verdict | Execution time | Memory | Grader output |
---|
Fetching results... |
# | Verdict | Execution time | Memory | Grader output |
---|
Fetching results... |