답안 #217182

# 제출 시각 아이디 문제 언어 결과 실행 시간 메모리
217182 2020-03-29T07:41:38 Z b00n0rp 경주 (Race) (IOI11_race) C++17
100 / 100
2259 ms 201924 KB
// --------------------------------------------------<TEMPLATE>--------------------------------------------------
// --------------------<optimizations>--------------------
#pragma GCC optimize("O3")
//(UNCOMMENT WHEN HAVING LOTS OF RECURSIONS)
#pragma comment(linker, "/stack:2000000000")
//(UNCOMMENT WHEN NEEDED)\
#pragma GCC optimize("Ofast,unroll-loops,no-stack-protector,fast-math")\
#pragma GCC target("sse,sse2,sse3,ssse3,sse4,popcnt,abm,mmx,avx,tune=native")
 
// -------------------</optimizations>--------------------
 
// ---------------<Headers and namespaces>----------------
#include <algorithm>
#include <bitset>
#include <cassert>
#include <chrono>
#include <cmath>
#include <complex>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <ctime>
#include <deque>
#include <functional>
#include <iomanip>
#include <iostream>
#include <iterator>
#include <limits>
#include <list>
#include <map>
#include <numeric>
#include <queue>
#include <random>
#include <ratio>
#include <set>
#include <sstream>
#include <stack>
#include <string>
#include <unordered_map>
#include <unordered_set>
#include <utility>
#include <vector>
using namespace std;
#include <sys/resource.h>
 
/*
#include <ext/pb_ds/assoc_container.hpp>
#include <ext/pb_ds/tree_policy.hpp>
#include <ext/rope>
using namespace __gnu_pbds;
using namespace __gnu_cxx;
*/
 
// ---------------</Headers and namespaces>---------------
 
// -----------------<Defines and typedefs>----------------
// typedef tree<int,null_type,less<int>,rb_tree_tag, \
tree_order_statistics_node_update> indexed_set; // use less_equal for multiset
// order_of_key (val): returns the no. of values less than val
// find_by_order (k): returns the iterator to kth largest element.(0-based)
 
typedef long double LD;
typedef long long ll;
// #define int ll
#define pb push_back
#define mp make_pair
#define REP(i,n) for (int i = 0; i < n; i++)
#define FOR(i,a,b) for (int i = a; i < b; i++)
#define REPD(i,n) for (int i = n-1; i >= 0; i--)
#define FORD(i,a,b) for (int i = a; i >= b; i--)
#define remax(a,b) a = max(a,b)
#define remin(a,b) a = min(a,b)
#define all(v) v.begin(),v.end()
typedef map<int,int> mii;
typedef vector<int> vi;
typedef vector<vi> vvi;
typedef pair<int,int> pii;
typedef vector<pii> vpii;
#define F first
#define S second
#define PQ(type) priority_queue<type>
#define PQD(type) priority_queue<type,vector<type>,greater<type> >
#define ITR :: iterator it
#define WL(t) while(t --)
#define SZ(x) ((int)(x).size())
#define runtime() ((double)clock() / CLOCKS_PER_SEC)
#define TR(container,it) for(typeof(container.begin()) it=container.begin();it!=container.end();it++)
#define sqr(x) ((x)*(x))
#define inrange(i,a,b) ((i>=min(a,b)) && (i<=max(a,b)))
 
// -----<SCANF>-----
#define sfi(x) scanf("%d",&x);
#define sfi2(x,y) scanf("%d%d",&x,&y);
#define sfi3(x,y,z) scanf("%d%d%d",&x,&y,&z);
 
#define sfl(x) scanf("%lld",&x);
#define sfl2(x,y) scanf("%lld%lld",&x,&y);
#define sfl3(x,y,z) scanf("%lld%lld%lld",&x,&y,&z);
#define sfl4(x,y,z,x1) scanf("%lld%lld%lld%lld",&x,&y,&z,&x1);
#define sfl5(x,y,z,x1,y1) scanf("%lld%lld%lld%lld%lld",&x,&y,&z,&x1,&y1);
#define sfl6(x,y,z,x1,y1,z1) scanf("%lld%lld%lld%lld%lld%lld",&x,&y,&z,&x1,&y1,&z1);
 
#define sfs(x) scanf("%s",x);
#define sfs2(x,y) scanf("%s%s",x,y);
#define sfs3(x,y,z) scanf("%s%s%s",x,y,z);
// ----</SCANF>-----
 
// ----<PRINTF>-----
#define pfi(x) printf("%d\n",x);
#define pfi2(x,y) printf("%d %d\n",x,y);
#define pfi3(x,y,z) printf("%d %d %d\n",x,y,z);
 
#define pfl(x) printf("%lld\n",x);
#define pfl2(x,y) printf("%lld %lld\n",x,y);
#define pfl3(x,y,z) printf("%lld %lld %lld\n",x,y,z);
 
#define pfs(x) printf("%s\n",x);
#define pfs2(x,y) printf("%s %s\n",x,y);
#define pfs3(x,y,z) printf("%s %s %s\n",x,y,z);
 
#define pwe(x) printf("%lld ",x); // print without end
// ----</PRINTF>----
 
#define FLSH fflush(stdout)
#define fileIO(name) \
    freopen(name".in", "r", stdin); \
    freopen(name".out", "w", stdout);
#define PRECISION(x) cout << fixed << setprecision(x); 
#define FAST_IO ios::sync_with_stdio(0); cin.tie(0); cout.tie(0);
 
// ----------------</Defines and typedefs>----------------
 
// -------------------<Debugging stuff>-------------------
#define TRACE
 
#ifdef TRACE
#define trace(...) __f(#__VA_ARGS__, __VA_ARGS__)
template <typename Arg1>
void __f(const char* name, Arg1&& arg1){
	cerr << name << " : " << arg1 << std::endl;
}
template <typename Arg1, typename... Args>
void __f(const char* names, Arg1&& arg1, Args&&... args){
	const char* comma = strchr(names + 1, ',');cerr.write(names, comma - names) << " : " << arg1<<" | ";__f(comma+1, args...);
}
#else
#define trace(...)
#endif
 
// ------------------</Debugging stuff>-------------------
 
// ------------------------<Consts>-----------------------
const int MAXN = 1000005;
const int SQRTN = 1003;
const int LOGN = 22;
const double PI=acos(-1);
 
#ifdef int
const int INF=1e16;
#else
const int INF=1e9;
#endif
 
const int MOD = 1000000007;
const int FMOD = 998244353;
const double eps = 1e-9;
 
// -----------------------</Consts>-----------------------
 
// -------------------------<RNG>-------------------------
mt19937 RNG(chrono::steady_clock::now().time_since_epoch().count()); 
#define SHUF(v) shuffle(all(v), RNG);
// Use mt19937_64 for 64 bit random numbers.
 
// ------------------------</RNG>-------------------------
 
// ----------------------<MATH>---------------------------
template<typename T> T gcd(T a, T b){return(b?__gcd(a,b):a);}
template<typename T> T lcm(T a, T b){return(a*(b/gcd(a,b)));}
int add(int a, int b, int c = MOD){int res=a+b;return(res>=c?res-c:res);}
int mod_neg(int a, int b, int c = MOD){int res;if(abs(a-b)<c)res=a-b;else res=(a-b)%c;return(res<0?res+c:res);}
int mul(int a, int b, int c = MOD){ll res=(ll)a*b;return(res>=c?res%c:res);}
int muln(int a, int b, int c = MOD){ll res=(ll)a*b;return ((res%c)+c)%c;}
ll mulmod(ll a,ll b, ll m = MOD){ll q = (ll)(((LD)a*(LD)b)/(LD)m);ll r=a*b-q*m;if(r>m)r%=m;if(r<0)r+=m;return r;}
template<typename T>T expo(T e, T n){T x=1,p=e;while(n){if(n&1)x=x*p;p=p*p;n>>=1;}return x;}
template<typename T>T power(T e, T n, T m = MOD){T x=1,p=e;while(n){if(n&1)x=mul(x,p,m);p=mul(p,p,m);n>>=1;}return x;}
template<typename T>T extended_euclid(T a, T b, T &x, T &y){T xx=0,yy=1;y=0;x=1;while(b){T q=a/b,t=b;b=a%b;a=t;\
t=xx;xx=x-q*xx;x=t;t=yy;yy=y-q*yy;y=t;}return a;}
template<typename T>T mod_inverse(T a, T n = MOD){T x,y,z=0;T d=extended_euclid(a,n,x,y);return(d>1?-1:mod_neg(x,z,n));}
 
const int FACSZ = 1; // Make sure to change this
 
int fact[FACSZ],ifact[FACSZ];
 
void precom(int c = MOD){
	fact[0] = 1;
	FOR(i,1,FACSZ) fact[i] = mul(fact[i-1],i,c);
	ifact[FACSZ-1] = mod_inverse(fact[FACSZ-1],c);
	REPD(i,FACSZ-1){
		ifact[i] = mul(i+1,ifact[i+1],c);
	}
}
 
int ncr(int n,int r,int c = MOD){
	return mul(mul(ifact[r],ifact[n-r],c),fact[n],c);
} 
// ----------------------</MATH>--------------------------
// --------------------------------------------------</TEMPLATE>--------------------------------------------------
 
void solvethetestcase();
 
// signed main(){
// 	rlimit R;
// 	getrlimit(RLIMIT_STACK, &R);
// 	R.rlim_cur = R.rlim_max;
// 	setrlimit(RLIMIT_STACK, &R);
// 	// (UNCOMMENT FOR CIN/COUT) \
// 	FAST_IO
// 	PRECISION(10)
 
// 	int t = 1;
// 	// (UNCOMMENT FOR MULTIPLE TEST CASES) \
// 	sfl(t);
// 	FOR(testcase,1,t+1){
// 		// (UNCOMMENT FOR CODEJAM) \
// 		printf("Case #%lld: ",testcase); 
// 		solvethetestcase();
// 	}
// }   
 
int n,k;
vector<pair<int,ll> > adj[200005];
pair<int,ll> par[200005][21];
int dep[200005],sz[200005];
bitset<200005> vis,vis2;
int poo = 0;

void dfs(int u,int p,ll pw,int d){
	dep[u] = d;
	par[u][0] = {p,pw};
	// trace(u,vis[u],poo);
	for(auto v:adj[u]){
		if(v.F != p){
			dfs(v.F,u,v.S,d+1);
		}
	}
}

int root = -1;
int cen_par[200005];
vector<pair<pair<ll,int>,int> > lmao[200005],lmao2;
int tot;

void dfs_1(int u,int p){
	sz[u] = 1;
	tot++;
	for(auto v:adj[u]){
		if(v.F == p or vis[v.F]) continue;
		dfs_1(v.F,u);
		sz[u] += sz[v.F];
	}
}

int dfs_2(int u,int p){
	for(auto v:adj[u]){
		if(vis[v.F] or v.F == p or sz[v.F] <= tot/2) continue;
		return dfs_2(v.F,u);
	}
	return u;
}

void dfs_cen(int u,int last){
	tot = 0;
	dfs_1(u,u);
	int cent = dfs_2(u,u);
	vis2[cent] = 1;
	if(last == -1){
		root = cent;
		cen_par[cent] = cent;
	}
	else{
		cen_par[cent] = last;
	}
	vis[cent] = 1;
	for(auto v:adj[cent]){
		if(!vis[v.F]) dfs_cen(v.F,cent);
	}
}

pair<ll,int> lca_dist(int u,int v){
	if(dep[u] > dep[v]) swap(u,v);
	ll res1 = 0;
	int res2 = 0;
	FORD(j,20,0){
		if(dep[v]-(1<<j) >= dep[u]){
			res1 += par[v][j].S;
			v = par[v][j].F;
			res2 += (1<<j);
		}
	}
	if(u == v) return {res1,res2};
	FORD(j,20,0){
		if(par[u][j].F != par[v][j].F){
			res1 += par[u][j].S+par[v][j].S;
			res2 += (1<<j)+(1<<j);
			u = par[u][j].F;
			v = par[v][j].F;
		}
	}
	res1+=par[u][0].S+par[v][0].S;
	res2 += 2;
	return {res1,res2};
}

signed best_path(signed N,signed K,signed H[][2],signed L[]){
	n = N;
	k = K;
	REP(i,N-1){
		int u = H[i][0],v = H[i][1],w = L[i];
		adj[u].pb({v,w*1LL});
		adj[v].pb({u,w*1LL});
	}
	dfs(0,0,0,0);
	FOR(j,1,21){
		REP(i,n){
			par[i][j] = {par[par[i][j-1].F][j-1].F,par[i][j-1].S+par[par[i][j-1].F][j-1].S};
		}
	}
	vis.reset();
	dfs_cen(0,-1);
	REP(i,n){
		int cur = i;
		while(cur != root){
			lmao[cen_par[cur]].pb({lca_dist(cen_par[cur],i),cur});
			cur = cen_par[cur];
		}
	}
	REP(i,n) sort(all(lmao[i]));
	signed res = n+5;
	REP(i,n){
		lmao2.clear();
		REP(j,lmao[i].size()){
			if(lmao[i][j].F.F == k) remin(res,(signed)lmao[i][j].F.S);
			if(j > 0 and lmao[i][j].F.F == lmao[i][j-1].F.F and lmao[i][j].S == lmao[i][j-1].S) continue;
			lmao2.pb(lmao[i][j]);
		}
		REP(j,lmao2.size()){
			pair<pair<ll,int>,int> bkl = {{k-lmao2[j].F.F,-1},-1};
			int ind = lower_bound(all(lmao2),bkl)-lmao2.begin();
			if(ind < lmao2.size() and lmao2[ind].F.F+lmao2[j].F.F == k and lmao2[ind].S != lmao2[j].S) remin(res,(signed)lmao2[ind].F.S+(signed)lmao2[j].F.S);
			ind++;
			if(ind < lmao2.size() and lmao2[ind].F.F+lmao2[j].F.F == k and lmao2[ind].S != lmao2[j].S) remin(res,(signed)lmao2[ind].F.S+(signed)lmao2[j].F.S);
		}
	}
	if(res == n+5) return -1;
	return res;
}
 
// void solvethetestcase(){
// 	signed N,K;
// 	sfi2(N,K);
// 	signed H[N-1][2],L[N-1];
// 	REP(i,N-1){
// 		sfi3(H[i][0],H[i][1],L[i])
// 	}
// 	pfi(best_path(N,K,H,L))
// }

Compilation message

race.cpp:5:0: warning: ignoring #pragma comment  [-Wunknown-pragmas]
 #pragma comment(linker, "/stack:2000000000")
 
race.cpp:6:1: warning: multi-line comment [-Wcomment]
 //(UNCOMMENT WHEN NEEDED)\
 ^
race.cpp:57:1: warning: multi-line comment [-Wcomment]
 // typedef tree<int,null_type,less<int>,rb_tree_tag, \
 ^
race.cpp:217:1: warning: multi-line comment [-Wcomment]
 //  // (UNCOMMENT FOR CIN/COUT) \
 ^
race.cpp:222:1: warning: multi-line comment [-Wcomment]
 //  // (UNCOMMENT FOR MULTIPLE TEST CASES) \
 ^
race.cpp:225:1: warning: multi-line comment [-Wcomment]
 //   // (UNCOMMENT FOR CODEJAM) \
 ^
race.cpp: In function 'int best_path(int, int, int (*)[2], int*)':
race.cpp:67:36: warning: comparison between signed and unsigned integer expressions [-Wsign-compare]
 #define REP(i,n) for (int i = 0; i < n; i++)
race.cpp:342:7:
   REP(j,lmao[i].size()){
       ~~~~~~~~~~~~~~~~              
race.cpp:342:3: note: in expansion of macro 'REP'
   REP(j,lmao[i].size()){
   ^~~
race.cpp:67:36: warning: comparison between signed and unsigned integer expressions [-Wsign-compare]
 #define REP(i,n) for (int i = 0; i < n; i++)
race.cpp:347:7:
   REP(j,lmao2.size()){
       ~~~~~~~~~~~~~~                
race.cpp:347:3: note: in expansion of macro 'REP'
   REP(j,lmao2.size()){
   ^~~
race.cpp:350:11: warning: comparison between signed and unsigned integer expressions [-Wsign-compare]
    if(ind < lmao2.size() and lmao2[ind].F.F+lmao2[j].F.F == k and lmao2[ind].S != lmao2[j].S) remin(res,(signed)lmao2[ind].F.S+(signed)lmao2[j].F.S);
       ~~~~^~~~~~~~~~~~~~
race.cpp:352:11: warning: comparison between signed and unsigned integer expressions [-Wsign-compare]
    if(ind < lmao2.size() and lmao2[ind].F.F+lmao2[j].F.F == k and lmao2[ind].S != lmao2[j].S) remin(res,(signed)lmao2[ind].F.S+(signed)lmao2[j].F.S);
       ~~~~^~~~~~~~~~~~~~
# 결과 실행 시간 메모리 Grader output
1 Correct 11 ms 9856 KB Output is correct
2 Correct 11 ms 9856 KB Output is correct
3 Correct 11 ms 9856 KB Output is correct
4 Correct 11 ms 9856 KB Output is correct
5 Correct 11 ms 9856 KB Output is correct
6 Correct 11 ms 9856 KB Output is correct
7 Correct 11 ms 9856 KB Output is correct
8 Correct 11 ms 9856 KB Output is correct
9 Correct 11 ms 9856 KB Output is correct
10 Correct 11 ms 9856 KB Output is correct
11 Correct 11 ms 9856 KB Output is correct
12 Correct 12 ms 9856 KB Output is correct
13 Correct 11 ms 9856 KB Output is correct
14 Correct 11 ms 9856 KB Output is correct
15 Correct 12 ms 9856 KB Output is correct
16 Correct 11 ms 9856 KB Output is correct
17 Correct 11 ms 9856 KB Output is correct
18 Correct 11 ms 9856 KB Output is correct
# 결과 실행 시간 메모리 Grader output
1 Correct 11 ms 9856 KB Output is correct
2 Correct 11 ms 9856 KB Output is correct
3 Correct 11 ms 9856 KB Output is correct
4 Correct 11 ms 9856 KB Output is correct
5 Correct 11 ms 9856 KB Output is correct
6 Correct 11 ms 9856 KB Output is correct
7 Correct 11 ms 9856 KB Output is correct
8 Correct 11 ms 9856 KB Output is correct
9 Correct 11 ms 9856 KB Output is correct
10 Correct 11 ms 9856 KB Output is correct
11 Correct 11 ms 9856 KB Output is correct
12 Correct 12 ms 9856 KB Output is correct
13 Correct 11 ms 9856 KB Output is correct
14 Correct 11 ms 9856 KB Output is correct
15 Correct 12 ms 9856 KB Output is correct
16 Correct 11 ms 9856 KB Output is correct
17 Correct 11 ms 9856 KB Output is correct
18 Correct 11 ms 9856 KB Output is correct
19 Correct 11 ms 9728 KB Output is correct
20 Correct 12 ms 9856 KB Output is correct
21 Correct 12 ms 10368 KB Output is correct
22 Correct 13 ms 10496 KB Output is correct
23 Correct 13 ms 10496 KB Output is correct
24 Correct 12 ms 10368 KB Output is correct
25 Correct 12 ms 10368 KB Output is correct
26 Correct 12 ms 10368 KB Output is correct
27 Correct 12 ms 10368 KB Output is correct
28 Correct 13 ms 10424 KB Output is correct
29 Correct 13 ms 10368 KB Output is correct
30 Correct 14 ms 10496 KB Output is correct
31 Correct 16 ms 10368 KB Output is correct
32 Correct 13 ms 10368 KB Output is correct
33 Correct 13 ms 10368 KB Output is correct
34 Correct 13 ms 10400 KB Output is correct
35 Correct 13 ms 10368 KB Output is correct
36 Correct 12 ms 10368 KB Output is correct
37 Correct 13 ms 10368 KB Output is correct
38 Correct 13 ms 10368 KB Output is correct
# 결과 실행 시간 메모리 Grader output
1 Correct 11 ms 9856 KB Output is correct
2 Correct 11 ms 9856 KB Output is correct
3 Correct 11 ms 9856 KB Output is correct
4 Correct 11 ms 9856 KB Output is correct
5 Correct 11 ms 9856 KB Output is correct
6 Correct 11 ms 9856 KB Output is correct
7 Correct 11 ms 9856 KB Output is correct
8 Correct 11 ms 9856 KB Output is correct
9 Correct 11 ms 9856 KB Output is correct
10 Correct 11 ms 9856 KB Output is correct
11 Correct 11 ms 9856 KB Output is correct
12 Correct 12 ms 9856 KB Output is correct
13 Correct 11 ms 9856 KB Output is correct
14 Correct 11 ms 9856 KB Output is correct
15 Correct 12 ms 9856 KB Output is correct
16 Correct 11 ms 9856 KB Output is correct
17 Correct 11 ms 9856 KB Output is correct
18 Correct 11 ms 9856 KB Output is correct
19 Correct 452 ms 80164 KB Output is correct
20 Correct 448 ms 79832 KB Output is correct
21 Correct 424 ms 79136 KB Output is correct
22 Correct 402 ms 75764 KB Output is correct
23 Correct 469 ms 87840 KB Output is correct
24 Correct 250 ms 69300 KB Output is correct
25 Correct 882 ms 97364 KB Output is correct
26 Correct 395 ms 97552 KB Output is correct
27 Correct 486 ms 131224 KB Output is correct
28 Correct 2250 ms 201924 KB Output is correct
29 Correct 2259 ms 201460 KB Output is correct
30 Correct 471 ms 131096 KB Output is correct
31 Correct 472 ms 131228 KB Output is correct
32 Correct 798 ms 131096 KB Output is correct
33 Correct 1721 ms 169116 KB Output is correct
34 Correct 1717 ms 176608 KB Output is correct
# 결과 실행 시간 메모리 Grader output
1 Correct 11 ms 9856 KB Output is correct
2 Correct 11 ms 9856 KB Output is correct
3 Correct 11 ms 9856 KB Output is correct
4 Correct 11 ms 9856 KB Output is correct
5 Correct 11 ms 9856 KB Output is correct
6 Correct 11 ms 9856 KB Output is correct
7 Correct 11 ms 9856 KB Output is correct
8 Correct 11 ms 9856 KB Output is correct
9 Correct 11 ms 9856 KB Output is correct
10 Correct 11 ms 9856 KB Output is correct
11 Correct 11 ms 9856 KB Output is correct
12 Correct 12 ms 9856 KB Output is correct
13 Correct 11 ms 9856 KB Output is correct
14 Correct 11 ms 9856 KB Output is correct
15 Correct 12 ms 9856 KB Output is correct
16 Correct 11 ms 9856 KB Output is correct
17 Correct 11 ms 9856 KB Output is correct
18 Correct 11 ms 9856 KB Output is correct
19 Correct 11 ms 9728 KB Output is correct
20 Correct 12 ms 9856 KB Output is correct
21 Correct 12 ms 10368 KB Output is correct
22 Correct 13 ms 10496 KB Output is correct
23 Correct 13 ms 10496 KB Output is correct
24 Correct 12 ms 10368 KB Output is correct
25 Correct 12 ms 10368 KB Output is correct
26 Correct 12 ms 10368 KB Output is correct
27 Correct 12 ms 10368 KB Output is correct
28 Correct 13 ms 10424 KB Output is correct
29 Correct 13 ms 10368 KB Output is correct
30 Correct 14 ms 10496 KB Output is correct
31 Correct 16 ms 10368 KB Output is correct
32 Correct 13 ms 10368 KB Output is correct
33 Correct 13 ms 10368 KB Output is correct
34 Correct 13 ms 10400 KB Output is correct
35 Correct 13 ms 10368 KB Output is correct
36 Correct 12 ms 10368 KB Output is correct
37 Correct 13 ms 10368 KB Output is correct
38 Correct 13 ms 10368 KB Output is correct
39 Correct 452 ms 80164 KB Output is correct
40 Correct 448 ms 79832 KB Output is correct
41 Correct 424 ms 79136 KB Output is correct
42 Correct 402 ms 75764 KB Output is correct
43 Correct 469 ms 87840 KB Output is correct
44 Correct 250 ms 69300 KB Output is correct
45 Correct 882 ms 97364 KB Output is correct
46 Correct 395 ms 97552 KB Output is correct
47 Correct 486 ms 131224 KB Output is correct
48 Correct 2250 ms 201924 KB Output is correct
49 Correct 2259 ms 201460 KB Output is correct
50 Correct 471 ms 131096 KB Output is correct
51 Correct 472 ms 131228 KB Output is correct
52 Correct 798 ms 131096 KB Output is correct
53 Correct 1721 ms 169116 KB Output is correct
54 Correct 1717 ms 176608 KB Output is correct
55 Correct 36 ms 16316 KB Output is correct
56 Correct 37 ms 16316 KB Output is correct
57 Correct 310 ms 86564 KB Output is correct
58 Correct 109 ms 57700 KB Output is correct
59 Correct 455 ms 101652 KB Output is correct
60 Correct 2144 ms 201532 KB Output is correct
61 Correct 481 ms 131864 KB Output is correct
62 Correct 464 ms 130968 KB Output is correct
63 Correct 799 ms 131012 KB Output is correct
64 Correct 1198 ms 163096 KB Output is correct
65 Correct 947 ms 154520 KB Output is correct
66 Correct 2222 ms 200444 KB Output is correct
67 Correct 265 ms 107088 KB Output is correct
68 Correct 708 ms 129792 KB Output is correct
69 Correct 699 ms 130200 KB Output is correct
70 Correct 632 ms 124184 KB Output is correct