Submission #216976

# Submission time Handle Problem Language Result Execution time Memory
216976 2020-03-28T15:25:55 Z IOrtroiii Harvest (JOI20_harvest) C++14
5 / 100
296 ms 58980 KB
/*
5 3 20 6
0 4 8 12 16
2 11 14
9
4 1932
2 93787
1 89
5 98124798
1 2684
1 137598
3 2
3 8375
4 237
*/
#include <bits/stdc++.h>

#include <ext/pb_ds/tree_policy.hpp>

#include <ext/pb_ds/assoc_container.hpp>

using namespace std;

using namespace __gnu_pbds;

using ll = int64_t;
using ull = uint64_t;
template<class T>
using ordered_set = tree<T, null_type, less<T>, rb_tree_tag, tree_order_statistics_node_update>;

mt19937_64 rng(chrono::steady_clock::now().time_since_epoch().count());

int main() {
   ios_base::sync_with_stdio(false);
   int N, M; ll L, C;
   cin >> N >> M >> L >> C;
   vector<ll> A(N);
   for (int i = 0; i < N; ++i) cin >> A[i], A[i] = L - 1 - A[i]; // for convenience
   reverse(A.begin(), A.end());
   vector<int> nxt(N);
   vector<ll> dist(N);
   {
      for (int v = 0; v < N; ++v) {
         ll newA = (A[v] + C) % L;
         int z = lower_bound(A.begin(), A.end(), newA) - A.begin();
         if (z == N) {
            nxt[v] = 0;
            dist[v] = C + L + A[0] - newA;
         } else {
            nxt[v] = z;
            dist[v] = C + A[z] - newA;
         }
      }
   }

   vector<vector<ll>> adds(N);
   while (M--) {
      ll B;
      cin >> B;
      B = L - 1 - B;
      int z = lower_bound(A.begin(), A.end(), B) - A.begin();
      if (z == N) {
         adds[0].emplace_back(L + A[0] - B);
      } else {
         adds[z].emplace_back(A[z] - B);
      }
   }

   int Q;
   cin >> Q;
   vector<vector<pair<ll, int>>> qs(N);
   vector<ll> ans(Q);
   for (int i = 0; i < Q; ++i) {
      int v; ll T;
      cin >> v >> T;
      v = N - v;
      qs[v].emplace_back(T, i);
   }
   vector<bool> isRoot(N);
   vector<int> visited(N, 0);
   for (int i = 0; i < N; ++i) {
      int v = i;
      while (visited[v] == 0) {
         visited[v] = 1;
         v = nxt[v];
      }
      if (visited[v] == 1) isRoot[v] = true;
      v = i;
      while (visited[v] == 1) {
         visited[v] = 2;
         v = nxt[v];
      }
   }
   vector<vector<int>> adj(N);
   for (int v = 0; v < N; ++v) {
      if (!isRoot[v]) {
         adj[nxt[v]].emplace_back(v);
      }
   }
   vector<ll> distToRoot(N);
   vector<ordered_set<pair<ll, ull>>> vals(N);
   for (int i = 0; i < N; ++i) {
      if (!isRoot[i]) continue;
      function<void(int)> dfs1 = [&](int v) {
         for (int u : adj[v]) {
            distToRoot[u] = distToRoot[v] + dist[u];
            dfs1(u);
         }
      };
      dfs1(i);
      function<void(int)> dfs2 = [&](int v) {
         for (auto z : adds[v]) {
            vals[v].insert({distToRoot[v] + z, rng()});
         }
         for (int u : adj[v]) {
            dfs2(u);
            if (int(vals[v].size()) < int(vals[u].size())) {
               vals[v].swap(vals[u]);
            }
            for (auto z : vals[u]) {
               vals[v].insert(z);
            }
            vals[u] = {};
         }
         for (auto q : qs[v]) {
            ans[q.second] += vals[v].order_of_key({q.first + distToRoot[v], -1});
         }
      };
      dfs2(i);
      vector<pair<ll, int>> cur_qs;
      ll cycleLen = distToRoot[nxt[i]] + dist[i];
      int v = i;
      while (true) {
         for (auto q : qs[v]) {
            cur_qs.emplace_back(q.first - (cycleLen - distToRoot[v]), q.second); // must pass through removed edge
         }
         v = nxt[v];
         if (v == i) break;
      }
      for (auto z : vals[i]) cur_qs.emplace_back(z.first, -1);
      sort(cur_qs.begin(), cur_qs.end());
      ordered_set<pair<ll, ull>> st;
      ll subt = 0;
      for (auto q : cur_qs) {
         if (q.second == -1) {
            st.insert({q.first, rng()});
            subt += (q.first / cycleLen);
         } else {
            ans[q.second] += (ll(q.first / cycleLen) * ll(st.size()) + st.order_of_key({q.first % cycleLen, -1}) - subt);
         }
      }
   }
   for (int i = 0; i < Q; ++i) cout << ans[i] << "\n";
   return 0;
}
# Verdict Execution time Memory Grader output
1 Correct 6 ms 640 KB Output is correct
2 Correct 11 ms 1280 KB Output is correct
3 Correct 10 ms 1536 KB Output is correct
4 Correct 11 ms 1664 KB Output is correct
5 Correct 11 ms 2304 KB Output is correct
6 Correct 11 ms 2432 KB Output is correct
7 Correct 11 ms 2308 KB Output is correct
8 Correct 10 ms 1664 KB Output is correct
9 Correct 10 ms 1664 KB Output is correct
10 Correct 10 ms 1664 KB Output is correct
11 Correct 10 ms 1664 KB Output is correct
12 Correct 11 ms 2432 KB Output is correct
13 Correct 12 ms 2432 KB Output is correct
14 Correct 11 ms 1992 KB Output is correct
15 Correct 10 ms 2048 KB Output is correct
16 Correct 11 ms 2048 KB Output is correct
17 Correct 11 ms 2096 KB Output is correct
18 Correct 10 ms 1920 KB Output is correct
19 Correct 10 ms 1920 KB Output is correct
20 Correct 11 ms 2048 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 169 ms 11396 KB Output is correct
2 Incorrect 296 ms 58980 KB Output isn't correct
3 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Correct 6 ms 640 KB Output is correct
2 Correct 11 ms 1280 KB Output is correct
3 Correct 10 ms 1536 KB Output is correct
4 Correct 11 ms 1664 KB Output is correct
5 Correct 11 ms 2304 KB Output is correct
6 Correct 11 ms 2432 KB Output is correct
7 Correct 11 ms 2308 KB Output is correct
8 Correct 10 ms 1664 KB Output is correct
9 Correct 10 ms 1664 KB Output is correct
10 Correct 10 ms 1664 KB Output is correct
11 Correct 10 ms 1664 KB Output is correct
12 Correct 11 ms 2432 KB Output is correct
13 Correct 12 ms 2432 KB Output is correct
14 Correct 11 ms 1992 KB Output is correct
15 Correct 10 ms 2048 KB Output is correct
16 Correct 11 ms 2048 KB Output is correct
17 Correct 11 ms 2096 KB Output is correct
18 Correct 10 ms 1920 KB Output is correct
19 Correct 10 ms 1920 KB Output is correct
20 Correct 11 ms 2048 KB Output is correct
21 Correct 169 ms 11396 KB Output is correct
22 Incorrect 296 ms 58980 KB Output isn't correct
23 Halted 0 ms 0 KB -