Submission #212413

# Submission time Handle Problem Language Result Execution time Memory
212413 2020-03-22T22:21:24 Z Benq Constellation 3 (JOI20_constellation3) C++14
100 / 100
780 ms 110104 KB
#include <bits/stdc++.h>
using namespace std;
 
typedef long long ll;
typedef long double ld;
typedef double db; 
typedef string str; 

typedef pair<int,int> pi;
typedef pair<ll,ll> pl; 
typedef pair<db,db> pd; 

typedef vector<int> vi; 
typedef vector<ll> vl; 
typedef vector<db> vd; 
typedef vector<str> vs; 
typedef vector<pi> vpi;
typedef vector<pl> vpl; 
typedef vector<pd> vpd; 

#define mp make_pair 
#define f first
#define s second
#define sz(x) (int)x.size()
#define all(x) begin(x), end(x)
#define rall(x) (x).rbegin(), (x).rend() 
#define rsz resize
#define ins insert 
#define ft front() 
#define bk back()
#define pf push_front 
#define pb push_back
#define eb emplace_back 
#define lb lower_bound 
#define ub upper_bound 

#define FOR(i,a,b) for (int i = (a); i < (b); ++i)
#define F0R(i,a) FOR(i,0,a)
#define ROF(i,a,b) for (int i = (b)-1; i >= (a); --i)
#define R0F(i,a) ROF(i,0,a)
#define trav(a,x) for (auto& a: x)

const int MOD = 1e9+7; // 998244353;
const int MX = 2e5+5; 
const ll INF = 1e18; 
const ld PI = acos((ld)-1);
const int xd[4] = {1,0,-1,0}, yd[4] = {0,1,0,-1}; 

template<class T> bool ckmin(T& a, const T& b) { 
	return b < a ? a = b, 1 : 0; }
template<class T> bool ckmax(T& a, const T& b) { 
	return a < b ? a = b, 1 : 0; } 
int pct(int x) { return __builtin_popcount(x); } 
int bit(int x) { return 31-__builtin_clz(x); } // floor(log2(x)) 
int cdiv(int a, int b) { return a/b+!(a<0||a%b == 0); } // division of a by b rounded up, assumes b > 0 

// INPUT
template<class A> void re(complex<A>& c);
template<class A, class B> void re(pair<A,B>& p);
template<class A> void re(vector<A>& v);
template<class A, size_t SZ> void re(array<A,SZ>& a);

template<class T> void re(T& x) { cin >> x; }
void re(db& d) { str t; re(t); d = stod(t); }
void re(ld& d) { str t; re(t); d = stold(t); }
template<class H, class... T> void re(H& h, T&... t) { re(h); re(t...); }

template<class A> void re(complex<A>& c) { A a,b; re(a,b); c = {a,b}; }
template<class A, class B> void re(pair<A,B>& p) { re(p.f,p.s); }
template<class A> void re(vector<A>& x) { trav(a,x) re(a); }
template<class A, size_t SZ> void re(array<A,SZ>& x) { trav(a,x) re(a); }

// TO_STRING
#define ts to_string
template<class A, class B> str ts(pair<A,B> p);
template<class A> str ts(complex<A> c) { return ts(mp(c.real(),c.imag())); }
str ts(bool b) { return b ? "true" : "false"; }
str ts(char c) { str s = ""; s += c; return s; }
str ts(str s) { return s; }
str ts(const char* s) { return (str)s; }
str ts(vector<bool> v) { 
	bool fst = 1; str res = "{";
	F0R(i,sz(v)) {
		if (!fst) res += ", ";
		fst = 0; res += ts(v[i]);
	}
	res += "}"; return res;
}
template<size_t SZ> str ts(bitset<SZ> b) {
	str res = ""; F0R(i,SZ) res += char('0'+b[i]);
	return res; }
template<class T> str ts(T v) {
	bool fst = 1; str res = "{";
	for (const auto& x: v) {
		if (!fst) res += ", ";
		fst = 0; res += ts(x);
	}
	res += "}"; return res;
}
template<class A, class B> str ts(pair<A,B> p) {
	return "("+ts(p.f)+", "+ts(p.s)+")"; }

// OUTPUT
template<class A> void pr(A x) { cout << ts(x); }
template<class H, class... T> void pr(const H& h, const T&... t) { 
	pr(h); pr(t...); }
void ps() { pr("\n"); } // print w/ spaces
template<class H, class... T> void ps(const H& h, const T&... t) { 
	pr(h); if (sizeof...(t)) pr(" "); ps(t...); }

// DEBUG
void DBG() { cerr << "]" << endl; }
template<class H, class... T> void DBG(H h, T... t) {
	cerr << to_string(h); if (sizeof...(t)) cerr << ", ";
	DBG(t...); }
#ifdef LOCAL // compile with -DLOCAL
#define dbg(...) cerr << "[" << #__VA_ARGS__ << "]: [", DBG(__VA_ARGS__)
#else
#define dbg(...) 42
#endif

// FILE I/O
void setIn(string s) { freopen(s.c_str(),"r",stdin); }
void setOut(string s) { freopen(s.c_str(),"w",stdout); }
void unsyncIO() { ios_base::sync_with_stdio(0); cin.tie(0); }
void setIO(string s = "") {
	unsyncIO();
	// cin.exceptions(cin.failbit); 
	// throws exception when do smth illegal
	// ex. try to read letter into int
	if (sz(s)) { setIn(s+".in"), setOut(s+".out"); } // for USACO
}

mt19937 rng((uint32_t)chrono::steady_clock::now().time_since_epoch().count()); 

/**
 * Description: 1D range minimum query. Can also do queries 
 	* for any associative operation in $O(1)$ with D\&C
 * Source: KACTL
 * Verification: 
	* https://cses.fi/problemset/stats/1647/
	* http://wcipeg.com/problem/ioi1223
	* https://pastebin.com/ChpniVZL
 * Memory: O(N\log N)
 * Time: O(1)
 */

template<class T> struct RMQ { // floor(log_2(x))
	int level(int x) { return 31-__builtin_clz(x); } 
	vector<T> v; vector<vi> jmp;
	int comb(int a, int b) { // index of min
		return v[a]==v[b]?min(a,b):(v[a]>v[b]?a:b); } 
	void init(const vector<T>& _v) {
		v = _v; jmp = {vi(sz(v))}; iota(all(jmp[0]),0);
		for (int j = 1; 1<<j <= sz(v); ++j) {
			jmp.pb(vi(sz(v)-(1<<j)+1));
			F0R(i,sz(jmp[j])) jmp[j][i] = comb(jmp[j-1][i],
									jmp[j-1][i+(1<<(j-1))]);
		}
	}
	int index(int l, int r) { // get index of min element
		int d = level(r-l+1);
		return comb(jmp[d][l],jmp[d][r-(1<<d)+1]); }
	T query(int l, int r) { return v[index(l,r)]; }
};

RMQ<int> R;
int N,M,depth[MX],par[MX][18];
vi A;
vpi path[MX];
ll dp[MX];

int lef(int X, int Y) {
	int lo = 0, hi = X-1;
	while (lo < hi) {
		int mid = (lo+hi+1)/2;
		if (R.query(mid,X-1) >= Y) lo = mid;
		else hi = mid-1;
	}
	return lo;
}

int rig(int X, int Y) {
	int lo = X+1, hi = N+1;
	while (lo < hi) {
		int mid = (lo+hi)/2;
		if (R.query(X+1,mid) >= Y) hi = mid;
		else lo = mid+1;
	}
	return lo;
}

int cat(int X, int Y) {
	int LL = lef(X,Y), RR = rig(X,Y);
	return R.index(LL+1,RR-1);
}

bool doneDp[MX][18],doneChild[MX][18];
ll sdp[MX][18],schild[MX][18],child[MX];

ll getChild(int hi, int i) {
	if (i == 0) return child[hi];
	if (doneChild[hi][i]) return schild[hi][i];
	doneChild[hi][i] = 1;
	return schild[hi][i] = getChild(hi,i-1)+getChild(par[hi][i-1],i-1);
}
ll getDp(int hi, int i) {
	if (i == 0) return dp[hi];
	if (doneDp[hi][i]) return sdp[hi][i];
	doneDp[hi][i] = 1;
	return sdp[hi][i] = getDp(hi,i-1)+getDp(par[hi][i-1],i-1);
}
ll sumChild(int hi, int d) {
	ll res = 0;
	R0F(i,18) if (d&(1<<i)) {
		res += getChild(hi,i);
		hi = par[hi][i];
	}
	return res;
}

ll sumDp(int hi, int d) {
	ll res = 0;
	R0F(i,18) if (d&(1<<i)) {
		res += getDp(hi,i);
		hi = par[hi][i];
	}
	return res;
}

ll qpath(int hi, int lo) {
	int d = depth[hi]-depth[lo]+1; assert(d >= 1);
	return sumChild(hi,d)-sumDp(hi,d-1);
}

int divi(int l, int r, int pre) {
	if (l > r) return 0;
	int x = R.index(l,r); depth[x] = depth[pre]+1;
	par[x][0] = pre; FOR(i,1,18) par[x][i] = par[par[x][i-1]][i-1];
	int L = divi(l,x-1,x), R = divi(x+1,r,x); 
	child[x] = dp[L]+dp[R]; ckmax(dp[x],child[x]);
	//dbg(x,L,R,dp[x],child[x]);
	trav(t,path[x]) ckmax(dp[x],qpath(t.f,x)+t.s);
	return x;
}

int main() {
	setIO(); re(N); A.rsz(N+2);
	A[0] = A[N+1] = N+1;
	FOR(i,1,N+1) re(A[i]);
	R.init(A);
	re(M);
	ll sum = 0;
	F0R(i,M) {
		int X,Y,C; re(X,Y,C);
		path[cat(X,Y)].pb({X,C});
		//dbg("WUT",X,Y,cat(X,Y));
		sum += C;
	}
	int x = divi(1,N,0); ps(sum-dp[x]);
	// you should actually read the stuff at the bottom
}

/* stuff you should look for
	* int overflow, array bounds
	* special cases (n=1?)
	* do smth instead of nothing and stay organized
	* WRITE STUFF DOWN
*/

Compilation message

constellation3.cpp: In function 'void setIn(std::__cxx11::string)':
constellation3.cpp:123:31: warning: ignoring return value of 'FILE* freopen(const char*, const char*, FILE*)', declared with attribute warn_unused_result [-Wunused-result]
 void setIn(string s) { freopen(s.c_str(),"r",stdin); }
                        ~~~~~~~^~~~~~~~~~~~~~~~~~~~~
constellation3.cpp: In function 'void setOut(std::__cxx11::string)':
constellation3.cpp:124:32: warning: ignoring return value of 'FILE* freopen(const char*, const char*, FILE*)', declared with attribute warn_unused_result [-Wunused-result]
 void setOut(string s) { freopen(s.c_str(),"w",stdout); }
                         ~~~~~~~^~~~~~~~~~~~~~~~~~~~~~
# Verdict Execution time Memory Grader output
1 Correct 7 ms 5376 KB Output is correct
2 Correct 8 ms 5248 KB Output is correct
3 Correct 7 ms 5248 KB Output is correct
4 Correct 7 ms 5248 KB Output is correct
5 Correct 7 ms 5248 KB Output is correct
6 Correct 7 ms 5248 KB Output is correct
7 Correct 8 ms 5248 KB Output is correct
8 Correct 7 ms 5248 KB Output is correct
9 Correct 7 ms 5248 KB Output is correct
10 Correct 8 ms 5248 KB Output is correct
11 Correct 7 ms 5248 KB Output is correct
12 Correct 7 ms 5248 KB Output is correct
13 Correct 7 ms 5248 KB Output is correct
14 Correct 7 ms 5248 KB Output is correct
15 Correct 7 ms 5248 KB Output is correct
16 Correct 7 ms 5120 KB Output is correct
17 Correct 7 ms 5248 KB Output is correct
18 Correct 7 ms 5248 KB Output is correct
19 Correct 7 ms 5248 KB Output is correct
20 Correct 7 ms 5248 KB Output is correct
21 Correct 7 ms 5248 KB Output is correct
22 Correct 7 ms 5248 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 7 ms 5376 KB Output is correct
2 Correct 8 ms 5248 KB Output is correct
3 Correct 7 ms 5248 KB Output is correct
4 Correct 7 ms 5248 KB Output is correct
5 Correct 7 ms 5248 KB Output is correct
6 Correct 7 ms 5248 KB Output is correct
7 Correct 8 ms 5248 KB Output is correct
8 Correct 7 ms 5248 KB Output is correct
9 Correct 7 ms 5248 KB Output is correct
10 Correct 8 ms 5248 KB Output is correct
11 Correct 7 ms 5248 KB Output is correct
12 Correct 7 ms 5248 KB Output is correct
13 Correct 7 ms 5248 KB Output is correct
14 Correct 7 ms 5248 KB Output is correct
15 Correct 7 ms 5248 KB Output is correct
16 Correct 7 ms 5120 KB Output is correct
17 Correct 7 ms 5248 KB Output is correct
18 Correct 7 ms 5248 KB Output is correct
19 Correct 7 ms 5248 KB Output is correct
20 Correct 7 ms 5248 KB Output is correct
21 Correct 7 ms 5248 KB Output is correct
22 Correct 7 ms 5248 KB Output is correct
23 Correct 10 ms 6016 KB Output is correct
24 Correct 9 ms 6016 KB Output is correct
25 Correct 9 ms 6016 KB Output is correct
26 Correct 9 ms 6016 KB Output is correct
27 Correct 9 ms 6016 KB Output is correct
28 Correct 9 ms 6016 KB Output is correct
29 Correct 11 ms 6064 KB Output is correct
30 Correct 9 ms 6016 KB Output is correct
31 Correct 10 ms 6016 KB Output is correct
32 Correct 10 ms 6016 KB Output is correct
33 Correct 11 ms 6016 KB Output is correct
34 Correct 10 ms 6016 KB Output is correct
35 Correct 10 ms 6016 KB Output is correct
36 Correct 10 ms 6016 KB Output is correct
37 Correct 9 ms 6144 KB Output is correct
38 Correct 9 ms 5632 KB Output is correct
39 Correct 9 ms 6016 KB Output is correct
40 Correct 10 ms 6016 KB Output is correct
41 Correct 10 ms 6016 KB Output is correct
42 Correct 10 ms 6016 KB Output is correct
43 Correct 10 ms 6016 KB Output is correct
44 Correct 10 ms 6016 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 7 ms 5376 KB Output is correct
2 Correct 8 ms 5248 KB Output is correct
3 Correct 7 ms 5248 KB Output is correct
4 Correct 7 ms 5248 KB Output is correct
5 Correct 7 ms 5248 KB Output is correct
6 Correct 7 ms 5248 KB Output is correct
7 Correct 8 ms 5248 KB Output is correct
8 Correct 7 ms 5248 KB Output is correct
9 Correct 7 ms 5248 KB Output is correct
10 Correct 8 ms 5248 KB Output is correct
11 Correct 7 ms 5248 KB Output is correct
12 Correct 7 ms 5248 KB Output is correct
13 Correct 7 ms 5248 KB Output is correct
14 Correct 7 ms 5248 KB Output is correct
15 Correct 7 ms 5248 KB Output is correct
16 Correct 7 ms 5120 KB Output is correct
17 Correct 7 ms 5248 KB Output is correct
18 Correct 7 ms 5248 KB Output is correct
19 Correct 7 ms 5248 KB Output is correct
20 Correct 7 ms 5248 KB Output is correct
21 Correct 7 ms 5248 KB Output is correct
22 Correct 7 ms 5248 KB Output is correct
23 Correct 10 ms 6016 KB Output is correct
24 Correct 9 ms 6016 KB Output is correct
25 Correct 9 ms 6016 KB Output is correct
26 Correct 9 ms 6016 KB Output is correct
27 Correct 9 ms 6016 KB Output is correct
28 Correct 9 ms 6016 KB Output is correct
29 Correct 11 ms 6064 KB Output is correct
30 Correct 9 ms 6016 KB Output is correct
31 Correct 10 ms 6016 KB Output is correct
32 Correct 10 ms 6016 KB Output is correct
33 Correct 11 ms 6016 KB Output is correct
34 Correct 10 ms 6016 KB Output is correct
35 Correct 10 ms 6016 KB Output is correct
36 Correct 10 ms 6016 KB Output is correct
37 Correct 9 ms 6144 KB Output is correct
38 Correct 9 ms 5632 KB Output is correct
39 Correct 9 ms 6016 KB Output is correct
40 Correct 10 ms 6016 KB Output is correct
41 Correct 10 ms 6016 KB Output is correct
42 Correct 10 ms 6016 KB Output is correct
43 Correct 10 ms 6016 KB Output is correct
44 Correct 10 ms 6016 KB Output is correct
45 Correct 481 ms 104176 KB Output is correct
46 Correct 495 ms 102904 KB Output is correct
47 Correct 471 ms 101124 KB Output is correct
48 Correct 470 ms 104428 KB Output is correct
49 Correct 446 ms 100592 KB Output is correct
50 Correct 463 ms 100872 KB Output is correct
51 Correct 459 ms 100872 KB Output is correct
52 Correct 484 ms 103032 KB Output is correct
53 Correct 482 ms 103156 KB Output is correct
54 Correct 744 ms 110104 KB Output is correct
55 Correct 780 ms 105848 KB Output is correct
56 Correct 756 ms 103944 KB Output is correct
57 Correct 750 ms 102136 KB Output is correct
58 Correct 640 ms 103952 KB Output is correct
59 Correct 721 ms 103180 KB Output is correct
60 Correct 216 ms 66024 KB Output is correct
61 Correct 527 ms 103588 KB Output is correct
62 Correct 770 ms 107656 KB Output is correct
63 Correct 531 ms 101936 KB Output is correct
64 Correct 496 ms 100044 KB Output is correct
65 Correct 745 ms 109056 KB Output is correct
66 Correct 457 ms 100608 KB Output is correct