Submission #208989

# Submission time Handle Problem Language Result Execution time Memory
208989 2020-03-12T22:45:18 Z spdskatr Werewolf (IOI18_werewolf) C++14
100 / 100
1688 ms 156760 KB
#include "werewolf.h"
#include <cstdio>
#include <vector>
#include <cstdlib>
#include <algorithm>
#include <utility>
#include <functional>
#include <cassert>
#define fi first
#define se second
#define SZ (1<<18)
using namespace std;
typedef pair<int, pair<int, int>> EDGE;

int N, M, Q;
vector<int> ans;
EDGE edges[400005];

class KRT {
	int uf[400005], rep[400005], cnt, cnt2;
	int f(int x) { if (x == uf[x]) return x; return uf[x] = f(uf[x]); }
	void un(int x, int y) {
		rep[f(y)] = cnt;
		uf[f(x)] = f(y);
	}
public:
	int seq[400005], val[400005], lc[400005], rc[400005], pos[400005], sz[400005];
	int jp[400005][20];
	int dfs(int x, int rev) {
		if (x < N) {
			seq[cnt2] = x;
			pos[x] = cnt2++;
			return sz[x];
		}
		jp[lc[x]][0] = jp[rc[x]][0] = x;
		sz[x] += dfs(lc[x], rev);
		sz[x] += dfs(rc[x], rev);
		if (rev) val[x] = min(val[lc[x]], val[rc[x]]);
		else val[x] = max(val[lc[x]], val[rc[x]]);
		pos[x] = pos[lc[x]];
		return sz[x];
	}
	void reconstruct(int rev) { // Rev set to 1 to toggle maximum spanning tree
		for (int i = 0; i < N; i++) {
			val[i] = rep[i] = i;
			sz[i] = 1;
			uf[i] = i;
		}
		cnt = N;
		for (int i = 0; i < M; i++) {
			int u = edges[i].se.fi, v = edges[i].se.se;
			if (f(u) != f(v)) {
				lc[cnt] = rep[f(u)];
				rc[cnt] = rep[f(v)];
				un(u, v);
				cnt++;
			}
		}
		jp[cnt-1][0] = cnt-1;
		dfs(cnt-1, rev);
		for (int b = 1; b < 20; b++) for (int i = 0; i < cnt; i++) {
			jp[i][b] = jp[jp[i][b-1]][b-1];
		}
	}
	pair<int, int> find_range(int x, int lim, int rev) {
		int cur = x;
		for (int i = 19; i >= 0; i--) {
			if (rev) {
				if (val[jp[cur][i]] >= lim) cur = jp[cur][i];
			} else {
				if (val[jp[cur][i]] <= lim) cur = jp[cur][i];
			}
		}
		return { pos[cur], pos[cur] + sz[cur] - 1 };
	}
} tree1, tree2;
class PersistentSegtree {
public:
	int st[16000000], lc[16000000], rc[16000000], heads[200005], al = 1;
	void seg_inc(int n, int pn, int lo, int hi, int i) {
		if (lo + 1 == hi) {
			st[n] = st[pn] + 1;
			return;
		}
		lc[n] = lc[pn], rc[n] = rc[pn];
		int mid = (lo + hi) / 2;
		if (mid > i) seg_inc(lc[n] = al++, lc[pn], lo, mid, i);
		else seg_inc(rc[n] = al++, rc[pn], mid, hi, i);
		st[n] = st[lc[n]] + st[rc[n]];
	}
	int seg_q(int n, int pn, int lo, int hi, int l, int r) {
		if (lo >= r || hi <= l) return 0;
		if (lo >= l && hi <= r) return st[n] - st[pn];
		int mid = (lo + hi) / 2;
		return seg_q(lc[n], lc[pn], lo, mid, l, r) + seg_q(rc[n], rc[pn], mid, hi, l, r);
	}
} st;

std::vector<int> check_validity(int n, std::vector<int> X, std::vector<int> Y,
                                std::vector<int> S, std::vector<int> E,
                                std::vector<int> L, std::vector<int> R) {
	N = n;
	M = X.size();
	Q = S.size();
	for (int i = 0; i < M; i++) {
		edges[i] = { max(X[i], Y[i]), { X[i], Y[i] } };
	}
	sort(edges, edges+M);
	tree1.reconstruct(0); // Werewolf tree
	for (int i = 0; i < M; i++) {
		edges[i] = { min(X[i], Y[i]), { X[i], Y[i] } };
	}
	sort(edges, edges+M, greater<EDGE>());
	tree2.reconstruct(1); // Human tree
	for (int i = 0; i < N; i++) {
		st.heads[i] = st.al++;
		st.seg_inc(st.heads[i], (i == 0 ? 0 : st.heads[i-1]), 0, N, tree2.pos[tree1.seq[i]]);
	}
	for (int i = 0; i < Q; i++) {
		pair<int, int> wolf = tree1.find_range(E[i], R[i], 0);
		pair<int, int> human = tree2.find_range(S[i], L[i], 1);
		int res = st.seg_q(st.heads[wolf.se], (wolf.fi == 0 ? 0 : st.heads[wolf.fi-1]), 0, N, human.fi, human.se + 1);
		ans.push_back(res > 0);
	}
	return ans;
}
# Verdict Execution time Memory Grader output
1 Correct 5 ms 504 KB Output is correct
2 Correct 5 ms 508 KB Output is correct
3 Correct 5 ms 504 KB Output is correct
4 Correct 5 ms 504 KB Output is correct
5 Correct 5 ms 504 KB Output is correct
6 Correct 5 ms 504 KB Output is correct
7 Correct 5 ms 504 KB Output is correct
8 Correct 5 ms 504 KB Output is correct
9 Correct 5 ms 504 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 5 ms 504 KB Output is correct
2 Correct 5 ms 508 KB Output is correct
3 Correct 5 ms 504 KB Output is correct
4 Correct 5 ms 504 KB Output is correct
5 Correct 5 ms 504 KB Output is correct
6 Correct 5 ms 504 KB Output is correct
7 Correct 5 ms 504 KB Output is correct
8 Correct 5 ms 504 KB Output is correct
9 Correct 5 ms 504 KB Output is correct
10 Correct 12 ms 2428 KB Output is correct
11 Correct 12 ms 2424 KB Output is correct
12 Correct 12 ms 2296 KB Output is correct
13 Correct 12 ms 2424 KB Output is correct
14 Correct 12 ms 2424 KB Output is correct
15 Correct 13 ms 2428 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 960 ms 138512 KB Output is correct
2 Correct 1363 ms 149252 KB Output is correct
3 Correct 1132 ms 147652 KB Output is correct
4 Correct 958 ms 147168 KB Output is correct
5 Correct 943 ms 146924 KB Output is correct
6 Correct 997 ms 146872 KB Output is correct
7 Correct 831 ms 146780 KB Output is correct
8 Correct 1257 ms 149460 KB Output is correct
9 Correct 797 ms 147676 KB Output is correct
10 Correct 652 ms 146924 KB Output is correct
11 Correct 705 ms 146968 KB Output is correct
12 Correct 704 ms 146796 KB Output is correct
13 Correct 1346 ms 149184 KB Output is correct
14 Correct 1320 ms 149276 KB Output is correct
15 Correct 1336 ms 149368 KB Output is correct
16 Correct 1354 ms 149180 KB Output is correct
17 Correct 817 ms 146860 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 5 ms 504 KB Output is correct
2 Correct 5 ms 508 KB Output is correct
3 Correct 5 ms 504 KB Output is correct
4 Correct 5 ms 504 KB Output is correct
5 Correct 5 ms 504 KB Output is correct
6 Correct 5 ms 504 KB Output is correct
7 Correct 5 ms 504 KB Output is correct
8 Correct 5 ms 504 KB Output is correct
9 Correct 5 ms 504 KB Output is correct
10 Correct 12 ms 2428 KB Output is correct
11 Correct 12 ms 2424 KB Output is correct
12 Correct 12 ms 2296 KB Output is correct
13 Correct 12 ms 2424 KB Output is correct
14 Correct 12 ms 2424 KB Output is correct
15 Correct 13 ms 2428 KB Output is correct
16 Correct 960 ms 138512 KB Output is correct
17 Correct 1363 ms 149252 KB Output is correct
18 Correct 1132 ms 147652 KB Output is correct
19 Correct 958 ms 147168 KB Output is correct
20 Correct 943 ms 146924 KB Output is correct
21 Correct 997 ms 146872 KB Output is correct
22 Correct 831 ms 146780 KB Output is correct
23 Correct 1257 ms 149460 KB Output is correct
24 Correct 797 ms 147676 KB Output is correct
25 Correct 652 ms 146924 KB Output is correct
26 Correct 705 ms 146968 KB Output is correct
27 Correct 704 ms 146796 KB Output is correct
28 Correct 1346 ms 149184 KB Output is correct
29 Correct 1320 ms 149276 KB Output is correct
30 Correct 1336 ms 149368 KB Output is correct
31 Correct 1354 ms 149180 KB Output is correct
32 Correct 817 ms 146860 KB Output is correct
33 Correct 1310 ms 147436 KB Output is correct
34 Correct 520 ms 31852 KB Output is correct
35 Correct 1601 ms 149616 KB Output is correct
36 Correct 1208 ms 147308 KB Output is correct
37 Correct 1509 ms 148988 KB Output is correct
38 Correct 1301 ms 147844 KB Output is correct
39 Correct 1382 ms 151568 KB Output is correct
40 Correct 1177 ms 156528 KB Output is correct
41 Correct 1159 ms 148472 KB Output is correct
42 Correct 781 ms 147456 KB Output is correct
43 Correct 1688 ms 153772 KB Output is correct
44 Correct 1511 ms 148844 KB Output is correct
45 Correct 1277 ms 152012 KB Output is correct
46 Correct 1455 ms 151660 KB Output is correct
47 Correct 1347 ms 149524 KB Output is correct
48 Correct 1339 ms 149240 KB Output is correct
49 Correct 1365 ms 149484 KB Output is correct
50 Correct 1322 ms 149460 KB Output is correct
51 Correct 1075 ms 156760 KB Output is correct
52 Correct 1098 ms 156752 KB Output is correct