# |
Submission time |
Handle |
Problem |
Language |
Result |
Execution time |
Memory |
208845 |
2020-03-12T09:48:34 Z |
teomrn |
Werewolf (IOI18_werewolf) |
C++14 |
|
1355 ms |
122664 KB |
#include <bits/stdc++.h>
using namespace std;
struct Aib {
vector <int> aib;
function <int(int)> lsb = [](int x) { return x & (-x); };
function <int(int)> qry = [&](int p) {
int ans = 0;
while (p)
ans += aib[p], p -= lsb(p);
return ans;
};
Aib(int N) : aib(N + 2, 0) { }
void Update(int poz, int val)
{
poz++;
while (poz < (int)aib.size())
aib[poz] += val, poz += lsb(poz);
}
int Query(int st, int dr)
{
st++, dr++;
return qry(dr) - (st > 0 ? qry(st - 1) : 0);
}
};
struct Tree {
vector <int> stramos, liniarizare;
vector <pair <int, int>> poz_in_liniarizare;
vector <vector <int>> adia;
vector <vector <int>> up;
int root;
Tree(int N) : stramos(N), poz_in_liniarizare(N), adia(N), up(N, vector <int> (20, -1)) {
iota(stramos.begin(), stramos.end(), 0);
}
int FindStramos(int nod) {
if (stramos[nod] != nod)
return stramos[nod] = FindStramos(stramos[nod]);
return stramos[nod];
}
void Dfs(int nod) {
// cerr << "Node " << nod << " has sons ";
// for (auto i : adia[nod])
// cerr << i << ' ';
// cerr << '\n';
for (int i = 1; i < 20; i++)
if (up[nod][i - 1] != -1)
up[nod][i] = up[up[nod][i - 1]][i - 1];
poz_in_liniarizare[nod].first = liniarizare.size();
liniarizare.push_back(nod);
for (auto i : adia[nod])
Dfs(i);
poz_in_liniarizare[nod].second = liniarizare.size() - 1;
}
pair <int, int> Span(int nod, function <bool(int)> ok) {
assert(ok(nod));
for (int i = 19; i >= 0; i--)
if (up[nod][i] != -1 && ok(up[nod][i]))
nod = up[nod][i];
return poz_in_liniarizare[nod];
}
};
vector <int> check_validity(int N, vector <int> X, vector <int> Y, vector <int> S, vector <int> E, vector <int> L, vector <int> R)
{
vector <vector <int>> graph(N);
for (int i = 0; i < (int)X.size(); i++) {
graph[X[i]].push_back(Y[i]);
graph[Y[i]].push_back(X[i]);
}
Tree small_up(N), big_up(N);
for (int i = 0; i < N; i++) {
for (auto vec : graph[i]) {
int x = big_up.FindStramos(vec);
if (vec < i && x != i) {
big_up.stramos[x] = i;
big_up.up[x][0] = i;
big_up.adia[i].push_back(x);
}
}
}
for (int i = N - 1; i >= 0; i--) {
for (auto vec : graph[i]) {
int x = small_up.FindStramos(vec);
if (vec > i && x != i) {
small_up.stramos[x] = i;
small_up.up[x][0] = i;
small_up.adia[i].push_back(x);
}
}
}
// cerr << "For small_up:\n";
small_up.Dfs(0);
// cerr << "\nFor bi_up:\n";
big_up.Dfs(N - 1);
// cerr << "Finished trees\n";
/// I have built the trees, now I have to check for each node the interval it can reach
int Q = S.size();
vector <int> intersection(Q, 0);
vector <pair <int, int>> to_verify(Q);
vector <vector <pair <int, int>>> events(N + 1); // pentru fiecare pozitie daca trebuie sa scad / sa adaug raspunsul pt un query
Aib aib(N);
for (int i = 0; i < Q; i++) {
auto intervS = small_up.Span(S[i], [&](int nod) -> bool { return nod >= L[i]; });
auto intervE = big_up.Span(E[i], [&](int nod) -> bool { return nod <= R[i]; });
// cerr << "Query i can get from S=" << S[i] << " to ";
// for (int j = intervS.first; j <= intervS.second; j++)
// cerr << small_up.liniarizare[j] << ' ';
// cerr << "\nQuery i can get from E=" << E[i] << " to ";
// for (int j = intervE.first; j <= intervE.second; j++)
// cerr << big_up.liniarizare[j] << ' ';
// cerr << "\n\n";
to_verify[i] = intervE;
events[intervS.first].push_back({ i, -1 });
events[intervS.second + 1].push_back({ i, 1 });
}
// cerr << "Finished adding segments\n";
for (int i = 0; i <= N; i++) {
/// mai intai verific de e de procesat
for (auto op : events[i]) {
int val = aib.Query(to_verify[op.first].first, to_verify[op.first].second);
intersection[op.first] += val * op.second;
}
if (i < N) {
int elem = small_up.liniarizare[i];
int poz_in_big = big_up.poz_in_liniarizare[elem].first;
aib.Update(poz_in_big, 1);
}
}
for (auto & it : intersection) {
assert(it >= 0);
it = min(it, 1);
}
return intersection;
}
# |
Verdict |
Execution time |
Memory |
Grader output |
1 |
Correct |
5 ms |
380 KB |
Output is correct |
2 |
Correct |
5 ms |
376 KB |
Output is correct |
3 |
Correct |
5 ms |
380 KB |
Output is correct |
4 |
Correct |
5 ms |
376 KB |
Output is correct |
5 |
Correct |
5 ms |
376 KB |
Output is correct |
6 |
Correct |
5 ms |
376 KB |
Output is correct |
7 |
Correct |
5 ms |
376 KB |
Output is correct |
8 |
Correct |
5 ms |
380 KB |
Output is correct |
9 |
Correct |
5 ms |
376 KB |
Output is correct |
# |
Verdict |
Execution time |
Memory |
Grader output |
1 |
Correct |
5 ms |
380 KB |
Output is correct |
2 |
Correct |
5 ms |
376 KB |
Output is correct |
3 |
Correct |
5 ms |
380 KB |
Output is correct |
4 |
Correct |
5 ms |
376 KB |
Output is correct |
5 |
Correct |
5 ms |
376 KB |
Output is correct |
6 |
Correct |
5 ms |
376 KB |
Output is correct |
7 |
Correct |
5 ms |
376 KB |
Output is correct |
8 |
Correct |
5 ms |
380 KB |
Output is correct |
9 |
Correct |
5 ms |
376 KB |
Output is correct |
10 |
Correct |
14 ms |
2040 KB |
Output is correct |
11 |
Correct |
12 ms |
2040 KB |
Output is correct |
12 |
Correct |
12 ms |
2040 KB |
Output is correct |
13 |
Correct |
13 ms |
2168 KB |
Output is correct |
14 |
Correct |
13 ms |
2064 KB |
Output is correct |
15 |
Correct |
14 ms |
2168 KB |
Output is correct |
# |
Verdict |
Execution time |
Memory |
Grader output |
1 |
Correct |
1033 ms |
107120 KB |
Output is correct |
2 |
Correct |
1185 ms |
115000 KB |
Output is correct |
3 |
Correct |
1004 ms |
113236 KB |
Output is correct |
4 |
Correct |
864 ms |
112496 KB |
Output is correct |
5 |
Correct |
876 ms |
112672 KB |
Output is correct |
6 |
Correct |
958 ms |
113644 KB |
Output is correct |
7 |
Correct |
904 ms |
112728 KB |
Output is correct |
8 |
Correct |
1062 ms |
114884 KB |
Output is correct |
9 |
Correct |
759 ms |
112580 KB |
Output is correct |
10 |
Correct |
675 ms |
112240 KB |
Output is correct |
11 |
Correct |
681 ms |
112324 KB |
Output is correct |
12 |
Correct |
760 ms |
112112 KB |
Output is correct |
13 |
Correct |
1266 ms |
120036 KB |
Output is correct |
14 |
Correct |
1274 ms |
120044 KB |
Output is correct |
15 |
Correct |
1275 ms |
120032 KB |
Output is correct |
16 |
Correct |
1316 ms |
120164 KB |
Output is correct |
17 |
Correct |
921 ms |
112776 KB |
Output is correct |
# |
Verdict |
Execution time |
Memory |
Grader output |
1 |
Correct |
5 ms |
380 KB |
Output is correct |
2 |
Correct |
5 ms |
376 KB |
Output is correct |
3 |
Correct |
5 ms |
380 KB |
Output is correct |
4 |
Correct |
5 ms |
376 KB |
Output is correct |
5 |
Correct |
5 ms |
376 KB |
Output is correct |
6 |
Correct |
5 ms |
376 KB |
Output is correct |
7 |
Correct |
5 ms |
376 KB |
Output is correct |
8 |
Correct |
5 ms |
380 KB |
Output is correct |
9 |
Correct |
5 ms |
376 KB |
Output is correct |
10 |
Correct |
14 ms |
2040 KB |
Output is correct |
11 |
Correct |
12 ms |
2040 KB |
Output is correct |
12 |
Correct |
12 ms |
2040 KB |
Output is correct |
13 |
Correct |
13 ms |
2168 KB |
Output is correct |
14 |
Correct |
13 ms |
2064 KB |
Output is correct |
15 |
Correct |
14 ms |
2168 KB |
Output is correct |
16 |
Correct |
1033 ms |
107120 KB |
Output is correct |
17 |
Correct |
1185 ms |
115000 KB |
Output is correct |
18 |
Correct |
1004 ms |
113236 KB |
Output is correct |
19 |
Correct |
864 ms |
112496 KB |
Output is correct |
20 |
Correct |
876 ms |
112672 KB |
Output is correct |
21 |
Correct |
958 ms |
113644 KB |
Output is correct |
22 |
Correct |
904 ms |
112728 KB |
Output is correct |
23 |
Correct |
1062 ms |
114884 KB |
Output is correct |
24 |
Correct |
759 ms |
112580 KB |
Output is correct |
25 |
Correct |
675 ms |
112240 KB |
Output is correct |
26 |
Correct |
681 ms |
112324 KB |
Output is correct |
27 |
Correct |
760 ms |
112112 KB |
Output is correct |
28 |
Correct |
1266 ms |
120036 KB |
Output is correct |
29 |
Correct |
1274 ms |
120044 KB |
Output is correct |
30 |
Correct |
1275 ms |
120032 KB |
Output is correct |
31 |
Correct |
1316 ms |
120164 KB |
Output is correct |
32 |
Correct |
921 ms |
112776 KB |
Output is correct |
33 |
Correct |
1173 ms |
114240 KB |
Output is correct |
34 |
Correct |
438 ms |
37008 KB |
Output is correct |
35 |
Correct |
1309 ms |
116204 KB |
Output is correct |
36 |
Correct |
1087 ms |
114540 KB |
Output is correct |
37 |
Correct |
1293 ms |
115564 KB |
Output is correct |
38 |
Correct |
1134 ms |
115052 KB |
Output is correct |
39 |
Correct |
1155 ms |
121072 KB |
Output is correct |
40 |
Correct |
1318 ms |
122664 KB |
Output is correct |
41 |
Correct |
979 ms |
113900 KB |
Output is correct |
42 |
Correct |
809 ms |
112388 KB |
Output is correct |
43 |
Correct |
1355 ms |
120520 KB |
Output is correct |
44 |
Correct |
1107 ms |
114792 KB |
Output is correct |
45 |
Correct |
914 ms |
119664 KB |
Output is correct |
46 |
Correct |
936 ms |
119276 KB |
Output is correct |
47 |
Correct |
1288 ms |
120292 KB |
Output is correct |
48 |
Correct |
1265 ms |
120032 KB |
Output is correct |
49 |
Correct |
1283 ms |
120300 KB |
Output is correct |
50 |
Correct |
1278 ms |
120032 KB |
Output is correct |
51 |
Correct |
1226 ms |
122092 KB |
Output is correct |
52 |
Correct |
1208 ms |
121844 KB |
Output is correct |