Submission #206011

# Submission time Handle Problem Language Result Execution time Memory
206011 2020-03-01T23:45:46 Z mode149256 Lamps (JOI19_lamps) C++14
4 / 100
101 ms 57160 KB
/*input
17
10110110110110101
01011100100110000

6
011011
110010

17
10110110110110101
01011100100110000

6
011011
110010
// 4
*/
#include <bits/stdc++.h>
using namespace std;

typedef long long ll;
typedef long double ld;
typedef complex<ld> cd;

typedef pair<int, int> pi;
typedef pair<ll, ll> pl;
typedef pair<ld, ld> pd;

typedef vector<int> vi;
typedef vector<vi> vii;
typedef vector<ld> vd;
typedef vector<ll> vl;
typedef vector<vl> vll;
typedef vector<pi> vpi;
typedef vector<vpi> vpii;
typedef vector<pl> vpl;
typedef vector<cd> vcd;
typedef vector<pd> vpd;
typedef vector<bool> vb;
typedef vector<vb> vbb;
typedef std::string str;
typedef std::vector<str> vs;

#define x first
#define y second
#define debug(...) cout<<"["<<#__VA_ARGS__<<": "<<__VA_ARGS__<<"]\n"

const int MOD = 1000000007;
const ll INF = std::numeric_limits<ll>::max();
const int MX = 100101;
const ld PI = 3.14159265358979323846264338327950288419716939937510582097494L;

template<typename T>
pair<T, T> operator+(const pair<T, T> &a, const pair<T, T> &b) { return pair<T, T>(a.x + b.x, a.y + b.y); }
template<typename T>
pair<T, T> operator-(const pair<T, T> &a, const pair<T, T> &b) { return pair<T, T>(a.x - b.x, a.y - b.y); }
template<typename T>
T operator*(const pair<T, T> &a, const pair<T, T> &b) { return (a.x * b.x + a.y * b.y); }
template<typename T>
T operator^(const pair<T, T> &a, const pair<T, T> &b) { return (a.x * b.y - a.y * b.x); }

template<typename T>
void print(vector<T> vec, string name = "") {
	cout << name;
	for (auto u : vec)
		cout << u << ' ';
	cout << '\n';
}

int main() {
	ios_base::sync_with_stdio(0); cin.tie(0); cout.tie(0);
	int N;
	str A, B;
	cin >> N >> A >> B;

	vii dp(N, vi(3, MOD));
	// 0 - done
	// 1 - ones
	// 2 - zeroes

	dp[0][0] = (A[0] != B[0]);
	dp[0][1] = 1 + (B[0] == '0');
	dp[0][2] = 1 + (B[0] == '1');

	for (int i = 1; i < N; ++i)
	{
		// pildom [0]
		dp[i][0] = min(dp[i][0], dp[i - 1][0] + (A[i] != B[i] and A[i - 1] == B[i - 1]));
		dp[i][0] = min(dp[i][0], dp[i - 1][1] + (A[i] != B[i] and B[i - 1] == '1'));
		dp[i][0] = min(dp[i][0], dp[i - 1][2] + (A[i] != B[i] and B[i - 1] == '0'));
		// dp[i][0] = min(dp[i][0], dp[i - 1][0] + (A[i] != B[i] and A[i - 1] == B[i - 1]));
		// dp[i][0] = min(dp[i][0], dp[i - 1][2] + (B[i] == '1' and B[i - 1] != '1'));

		// pildom [1]
		dp[i][1] = min(dp[i][1], dp[i - 1][0] + 1 + (B[i] == '0' and A[i - 1] != B[i - 1]));
		dp[i][1] = min(dp[i][1], dp[i - 1][1] + (B[i] == '0' and B[i - 1] != '0'));
		// dp[i][1] = min(dp[i][1], dp[i - 1][2] + (B[i] == '0'));


		dp[i][2] = min(dp[i][2], dp[i - 1][0] + 1 + (B[i] == '1' and A[i - 1] != B[i - 1]));
		dp[i][2] = min(dp[i][2], dp[i - 1][2] + (B[i] == '1' and B[i - 1] != '1'));
	}

	// print(dp);
	// for (int i = 0; i < N; ++i) printf("%d", dp[i][0]); printf("\n");
	// for (int i = 0; i < N; ++i) printf("%d", dp[i][1]); printf("\n");
	// for (int i = 0; i < N; ++i) printf("%d", dp[i][2]); printf("\n");

	printf("%d\n", min(dp[N - 1][0], min(dp[N - 1][1], dp[N - 1][2])));
}

/* Look for:
* special cases (n=1?)
* overflow (ll vs int?)
* the exact constraints (multiple sets are too slow for n=10^6 :( )
* array bounds
*/
# Verdict Execution time Memory Grader output
1 Correct 6 ms 376 KB Output is correct
2 Correct 5 ms 376 KB Output is correct
3 Correct 5 ms 376 KB Output is correct
4 Correct 5 ms 376 KB Output is correct
5 Correct 5 ms 376 KB Output is correct
6 Correct 5 ms 376 KB Output is correct
7 Correct 4 ms 376 KB Output is correct
8 Correct 5 ms 380 KB Output is correct
9 Correct 5 ms 376 KB Output is correct
10 Correct 4 ms 376 KB Output is correct
11 Correct 5 ms 376 KB Output is correct
12 Incorrect 5 ms 376 KB Output isn't correct
13 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Correct 6 ms 376 KB Output is correct
2 Correct 5 ms 376 KB Output is correct
3 Correct 5 ms 376 KB Output is correct
4 Correct 5 ms 376 KB Output is correct
5 Correct 5 ms 376 KB Output is correct
6 Correct 5 ms 376 KB Output is correct
7 Correct 4 ms 376 KB Output is correct
8 Correct 5 ms 380 KB Output is correct
9 Correct 5 ms 376 KB Output is correct
10 Correct 4 ms 376 KB Output is correct
11 Correct 5 ms 376 KB Output is correct
12 Incorrect 5 ms 376 KB Output isn't correct
13 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Correct 4 ms 376 KB Output is correct
2 Correct 5 ms 376 KB Output is correct
3 Correct 5 ms 376 KB Output is correct
4 Correct 5 ms 504 KB Output is correct
5 Correct 4 ms 376 KB Output is correct
6 Correct 5 ms 376 KB Output is correct
7 Correct 80 ms 57156 KB Output is correct
8 Correct 82 ms 57032 KB Output is correct
9 Correct 83 ms 57156 KB Output is correct
10 Correct 81 ms 57036 KB Output is correct
11 Correct 101 ms 57160 KB Output is correct
12 Correct 84 ms 57032 KB Output is correct
13 Correct 80 ms 57032 KB Output is correct
14 Correct 82 ms 57036 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 6 ms 376 KB Output is correct
2 Correct 5 ms 376 KB Output is correct
3 Correct 5 ms 376 KB Output is correct
4 Correct 5 ms 376 KB Output is correct
5 Correct 5 ms 376 KB Output is correct
6 Correct 5 ms 376 KB Output is correct
7 Correct 4 ms 376 KB Output is correct
8 Correct 5 ms 380 KB Output is correct
9 Correct 5 ms 376 KB Output is correct
10 Correct 4 ms 376 KB Output is correct
11 Correct 5 ms 376 KB Output is correct
12 Incorrect 5 ms 376 KB Output isn't correct
13 Halted 0 ms 0 KB -