Submission #205625

#TimeUsernameProblemLanguageResultExecution timeMemory
205625model_codeRaisins (IOI09_raisins)C++17
100 / 100
589 ms24952 KiB
/* * Solution to IOI 2009 problem "raisins" * * This solution employs memoization in order to compute the the best * way of cutting any sub-rectangle of the chocolate. To do this * sufficiently quickly, we also precompute the number of raisins in * each sub-rectangle subtended from the top-left corner of the chocolate. * * This allows us to compute the number of raisins in any rectangular * sub-region of the chocolate -- consider the diagram below: * * (0,0)-------+-------(c,0) * | A | B | * +-------(a,b)-------+ * | C | D | * (0,d)-------+-------(c,d) * * Suppose we wish to compute the number of raisins in the region * (a,b) -> (c,d), D. Now D = (A + B + C + D) - (A + B) - (A + C) + A * Each of these four quantities is given by the number of raisins * in a rectangular sub-region whose top-left corner is (0,0). * * Carl Hultquist, [email protected] */ #include <iostream> #include <cassert> #include <climits> #include <cstring> using namespace std; #define MAX_SIZE 50 #define MAX_VAL 1000 // The dimensions of the chocolate int r, c; // The number of raisins on each piece of chocolate short chocolate[MAX_SIZE][MAX_SIZE]; // The number of raisins in a rectangular sub-region subtended from the // top-left corner of the chocolate. int raisins[MAX_SIZE][MAX_SIZE]; // The minimum payment that Bonny must make for Peter to cut any // rectangular sub-region of the chocolate. int best[MAX_SIZE][MAX_SIZE][MAX_SIZE][MAX_SIZE]; /** * Computes the smallest cost of cutting up the rectangular portion of * the chocolate from (r1,c1) to (r2,c2). */ int solve(int r1, int c1, int r2, int c2) { if (best[r1][c1][r2][c2] == -1) { // We haven't computed this previously, so compute it now. if (r1 == r2 && c1 == c2) { // If we have a single cell left, then we're done: // there's no additional cost. best[r1][c1][r2][c2] = 0; } else { // We try all the possible cuts, and see which results in // the smallest total payment. int best_payment = INT_MAX; // First try the rows for (int r = r1 + 1; r <= r2; r++) { int payment = solve(r1, c1, r - 1, c2) + solve(r, c1, r2, c2); if (payment < best_payment) best_payment = payment; } // Now try the columns for (int c = c1 + 1; c <= c2; c++) { int payment = solve(r1, c1, r2, c - 1) + solve(r1, c, r2, c2); if (payment < best_payment) best_payment = payment; } // Determine how many raisins int base_raisins = raisins[r2][c2]; if (r1 > 0) base_raisins -= raisins[r1 - 1][c2]; if (c1 > 0) base_raisins -= raisins[r2][c1 - 1]; if (r1 > 0 && c1 > 0) base_raisins += raisins[r1 - 1][c1 - 1]; best[r1][c1][r2][c2] = best_payment + base_raisins; } } return best[r1][c1][r2][c2]; } int main() { cin >> r >> c; assert(1 <= r && r <= MAX_SIZE); assert(1 <= c && c <= MAX_SIZE); // Read in the number of raisins on each piece of chocolate for (int i = 0; i < r; i++) for (int j = 0; j < c; j++) { cin >> chocolate[i][j]; assert(0 <= chocolate[i][j] && chocolate[i][j] <= MAX_VAL); } memset(raisins, -1, sizeof(raisins)); memset(best, -1, sizeof(best)); // First precompute the number of raisins on each rectangular // sub-region subtended from the top-left corner of the chocolate. raisins[0][0] = chocolate[0][0]; for (int i = 1; i < r; i++) raisins[i][0] = chocolate[i][0] + raisins[i - 1][0]; for (int j = 1; j < c; j++) { raisins[0][j] = chocolate[0][j] + raisins[0][j - 1]; for (int i = 1; i < r; i++) raisins[i][j] = chocolate[i][j] + raisins[i - 1][j] + raisins[i][j - 1] - raisins[i - 1][j - 1]; } // Find the minimum payment for cutting up the whole slab of // chocolate. cout << solve(0, 0, r - 1, c - 1) << endl; return 0; }
#Verdict Execution timeMemoryGrader output
Fetching results...