# |
Submission time |
Handle |
Problem |
Language |
Result |
Execution time |
Memory |
200917 |
2020-02-08T14:39:35 Z |
oolimry |
Simurgh (IOI17_simurgh) |
C++14 |
|
260 ms |
6136 KB |
#include "simurgh.h"
#include <bits/stdc++.h>
using namespace std;
///T is the spanning tree we determine, R is the royal tree
///Phase A: find any spanning tree T of the graph, and determine if each of its edges belong to the royal set in 3N queries
///T is a DFS Tree. For each node, find a back edge that goes up as much as possible. We'll call the cycle formed by the back edge and T a back cycle.
///For any cycle, we can find which edges are royal by fixing the rest of the queried tree, and try to remove each edge from the cycle.
///If the cycle has some edges we know the status of, we need not try to remove all of them, just removing 1 of them as a reference is good enough.
///As all the edges among all cycles (except for the N back edges) belong to T, there are at most 3N queries. (N edges in T + N back edges + N reference edge for each cycle)
///If any edge is not part of any back cycle, then it is a bridge and is surely a royal road
///This spanning tree is useful since we can now query for some forest F, how many edges in F are royal. We can do this just by connecting the forest by adding edges from T into F
///We keep track if we're adding royal edges into F, and later subtract if needed
///Phase B: Determine how many royal edges come out of each node. We can determine a leaf of R. We can binary search all edges of the leaf to find the edge
///Remove the leaf from R, and repeat the process until we get the whole tree. This takes NlogN queries
typedef pair<int,int> ii;
int n, m;
vector<int> answer;
vector<int> adj[505];
int edgeNo[505][505];
int edgeState[250000]; ///-1: unknown, 0: unroyal. 1: royal
ii edges[250000];
int depth[505];
int parent[505];
int back[505];
int degree[505];
vector<ii> backCycles;
vector<int> treeEdges;
void dfs(int u){
int largestBack = u;
for(int v : adj[u]){
if(depth[v] == 0){
depth[v] = depth[u] + 1;
parent[v] = u;
treeEdges.push_back(edgeNo[u][v]);
dfs(v);
}
else if(v != parent[u]){
if(depth[largestBack] > depth[v]) largestBack = v; ///finding the furthest back edge
}
}
backCycles.push_back(ii(u, largestBack));
}
struct UFDS{
int p[505];
void reset(){
for(int i = 0;i < n;i++) p[i] = i;
}
int findSet(int u){
if(u == p[u]) return u;
else{
p[u] = findSet(p[u]);
return p[u];
}
}
bool unionSet(int u, int v){
u = findSet(u); v = findSet(v);
if(u == v) return false;
p[u] = v;
return true;
}
} uf;
int queryForest(vector<int> forestEdges){ ///forestEdges are the edges we want to test
uf.reset();
int res = 0;
vector<int> query;
for(int e : forestEdges){
uf.unionSet(edges[e].first, edges[e].second);
query.push_back(e);
}
for(int e : treeEdges){
if(uf.unionSet(edges[e].first, edges[e].second)){
query.push_back(e);
if(edgeState[e] == 1) res--; ///acounting for royal roads we add from T
}
}
res += count_common_roads(query);
return res;
}
vector<int> find_roads(int N, vector<int> P, vector<int> Q) {
n = N; m = P.size();
for(int i = 0;i < n;i++) for(int j = 0;j < n;j++) edgeNo[i][j] = -1;
fill(edgeState,edgeState+m,-1);
for(int i = 0;i < m;i++){
edgeNo[P[i]][Q[i]] = i;
edgeNo[Q[i]][P[i]] = i;
edges[i] = ii(P[i],Q[i]);
adj[P[i]].push_back(Q[i]);
adj[Q[i]].push_back(P[i]);
}
depth[0] = 1;
dfs(0);
///Phase A
for(ii C : backCycles){
vector<int> cycleEdges;
int bottom = C.first, top = C.second;
if(bottom == top) continue;
cycleEdges.push_back(edgeNo[bottom][top]);
while(bottom != top){
int up = parent[bottom];
cycleEdges.push_back(edgeNo[up][bottom]);
bottom = up;
}
vector<int> cycleAnswer;
int maxValue = 0; int minValue = 600;
int reference = -1; ///value taken if we know we're excluding an unroyal edge
for(int removedEdge : cycleEdges){
if(edgeState[removedEdge] != -1){ ///Encounter an edge we know the status
if(reference != -1){ ///Reference has been calculated before (see below code)
int res = reference;
if(edgeState[removedEdge] == 1) res--;
maxValue = max(res, maxValue);
minValue = min(res, minValue);
cycleAnswer.push_back(res);
continue;
}
}
vector<int> query;
for(int e : cycleEdges){
if(e != removedEdge) query.push_back(e);
}
int res = queryForest(query);
cycleAnswer.push_back(res);
maxValue = max(res, maxValue);
minValue = min(res, minValue);
if(edgeState[removedEdge] != -1){
if(reference == -1){ ///First edge we know the status, we set this as the reference
reference = res;
if(edgeState[removedEdge] == 1) reference++; ///reference is the value we'd expect after removing an unroyal edge
}
}
}
if(minValue == maxValue){
for(int e : cycleEdges){
edgeState[e] = 0; ///a cycle cannot consist of all royal edges
}
}
else{
for(int i = 0;i < (int) cycleEdges.size();i++){
if(cycleAnswer[i] == maxValue) edgeState[cycleEdges[i]] = 0;
else edgeState[cycleEdges[i]] = 1;
}
}
}
for(int e : treeEdges){
if(edgeState[e] == -1) edgeState[e] = 1; ///bridges are royal
}
///Phase B
for(int i = 0;i < n;i++){
vector<int> query;
for(int j = 0;j < n;j++){
if(edgeNo[i][j] != -1){
query.push_back(edgeNo[i][j]);
}
}
degree[i] = queryForest(query);
}
while((int) answer.size() < n - 1){
for(int leaf = 0;leaf < n;leaf++){
if(degree[leaf] != 1) continue; ///finding a node with deegre 1
vector<int> allEdges;
for(int j = 0;j < n;j++){
if(edgeNo[leaf][j] != -1 && degree[j] != 0){
allEdges.push_back(edgeNo[leaf][j]);
}
}
int low = -1; int high = allEdges.size() - 1;
///Binary search the edge that belongs to the royal tree
while(true){
if(low == high - 1) break;
int s = (low + high) / 2;
vector<int> query;
for(int i = 0;i <= s;i++){
query.push_back(allEdges[i]);
}
if(queryForest(query) == 1) high = s;
else low = s;
}
///removing the leaf from the royal tree
int leafEdge = allEdges[high];
degree[edges[leafEdge].first]--;
degree[edges[leafEdge].second]--;
answer.push_back(leafEdge);
}
}
return answer;
}
///Side note: in Phase A, we use queryForest despite not knowing the status of the edges in T.
///This is still ok since the additional edges we add are the same each time
# |
Verdict |
Execution time |
Memory |
Grader output |
1 |
Correct |
5 ms |
376 KB |
correct |
2 |
Correct |
5 ms |
376 KB |
correct |
3 |
Correct |
5 ms |
376 KB |
correct |
4 |
Correct |
5 ms |
376 KB |
correct |
5 |
Correct |
5 ms |
376 KB |
correct |
6 |
Correct |
5 ms |
376 KB |
correct |
7 |
Correct |
5 ms |
376 KB |
correct |
8 |
Correct |
6 ms |
376 KB |
correct |
9 |
Correct |
5 ms |
376 KB |
correct |
10 |
Correct |
5 ms |
376 KB |
correct |
11 |
Correct |
5 ms |
376 KB |
correct |
12 |
Correct |
5 ms |
376 KB |
correct |
13 |
Correct |
5 ms |
376 KB |
correct |
# |
Verdict |
Execution time |
Memory |
Grader output |
1 |
Correct |
5 ms |
376 KB |
correct |
2 |
Correct |
5 ms |
376 KB |
correct |
3 |
Correct |
5 ms |
376 KB |
correct |
4 |
Correct |
5 ms |
376 KB |
correct |
5 |
Correct |
5 ms |
376 KB |
correct |
6 |
Correct |
5 ms |
376 KB |
correct |
7 |
Correct |
5 ms |
376 KB |
correct |
8 |
Correct |
6 ms |
376 KB |
correct |
9 |
Correct |
5 ms |
376 KB |
correct |
10 |
Correct |
5 ms |
376 KB |
correct |
11 |
Correct |
5 ms |
376 KB |
correct |
12 |
Correct |
5 ms |
376 KB |
correct |
13 |
Correct |
5 ms |
376 KB |
correct |
14 |
Correct |
8 ms |
504 KB |
correct |
15 |
Correct |
7 ms |
504 KB |
correct |
16 |
Correct |
7 ms |
508 KB |
correct |
17 |
Correct |
7 ms |
632 KB |
correct |
18 |
Correct |
6 ms |
504 KB |
correct |
19 |
Correct |
7 ms |
504 KB |
correct |
20 |
Correct |
7 ms |
504 KB |
correct |
21 |
Correct |
8 ms |
504 KB |
correct |
22 |
Correct |
6 ms |
504 KB |
correct |
23 |
Correct |
6 ms |
504 KB |
correct |
24 |
Correct |
6 ms |
504 KB |
correct |
25 |
Correct |
5 ms |
504 KB |
correct |
26 |
Correct |
6 ms |
504 KB |
correct |
27 |
Correct |
6 ms |
504 KB |
correct |
28 |
Correct |
6 ms |
504 KB |
correct |
29 |
Correct |
6 ms |
504 KB |
correct |
30 |
Correct |
7 ms |
504 KB |
correct |
31 |
Correct |
6 ms |
504 KB |
correct |
32 |
Correct |
6 ms |
508 KB |
correct |
33 |
Correct |
6 ms |
504 KB |
correct |
# |
Verdict |
Execution time |
Memory |
Grader output |
1 |
Correct |
5 ms |
376 KB |
correct |
2 |
Correct |
5 ms |
376 KB |
correct |
3 |
Correct |
5 ms |
376 KB |
correct |
4 |
Correct |
5 ms |
376 KB |
correct |
5 |
Correct |
5 ms |
376 KB |
correct |
6 |
Correct |
5 ms |
376 KB |
correct |
7 |
Correct |
5 ms |
376 KB |
correct |
8 |
Correct |
6 ms |
376 KB |
correct |
9 |
Correct |
5 ms |
376 KB |
correct |
10 |
Correct |
5 ms |
376 KB |
correct |
11 |
Correct |
5 ms |
376 KB |
correct |
12 |
Correct |
5 ms |
376 KB |
correct |
13 |
Correct |
5 ms |
376 KB |
correct |
14 |
Correct |
8 ms |
504 KB |
correct |
15 |
Correct |
7 ms |
504 KB |
correct |
16 |
Correct |
7 ms |
508 KB |
correct |
17 |
Correct |
7 ms |
632 KB |
correct |
18 |
Correct |
6 ms |
504 KB |
correct |
19 |
Correct |
7 ms |
504 KB |
correct |
20 |
Correct |
7 ms |
504 KB |
correct |
21 |
Correct |
8 ms |
504 KB |
correct |
22 |
Correct |
6 ms |
504 KB |
correct |
23 |
Correct |
6 ms |
504 KB |
correct |
24 |
Correct |
6 ms |
504 KB |
correct |
25 |
Correct |
5 ms |
504 KB |
correct |
26 |
Correct |
6 ms |
504 KB |
correct |
27 |
Correct |
6 ms |
504 KB |
correct |
28 |
Correct |
6 ms |
504 KB |
correct |
29 |
Correct |
6 ms |
504 KB |
correct |
30 |
Correct |
7 ms |
504 KB |
correct |
31 |
Correct |
6 ms |
504 KB |
correct |
32 |
Correct |
6 ms |
508 KB |
correct |
33 |
Correct |
6 ms |
504 KB |
correct |
34 |
Correct |
50 ms |
2040 KB |
correct |
35 |
Correct |
51 ms |
1912 KB |
correct |
36 |
Correct |
45 ms |
1784 KB |
correct |
37 |
Correct |
21 ms |
888 KB |
correct |
38 |
Correct |
51 ms |
2008 KB |
correct |
39 |
Correct |
47 ms |
1912 KB |
correct |
40 |
Correct |
43 ms |
1784 KB |
correct |
41 |
Correct |
54 ms |
2040 KB |
correct |
42 |
Correct |
52 ms |
2040 KB |
correct |
43 |
Correct |
37 ms |
1528 KB |
correct |
44 |
Correct |
36 ms |
1400 KB |
correct |
45 |
Correct |
37 ms |
1532 KB |
correct |
46 |
Correct |
34 ms |
1272 KB |
correct |
47 |
Correct |
26 ms |
1144 KB |
correct |
48 |
Correct |
12 ms |
888 KB |
correct |
49 |
Correct |
19 ms |
888 KB |
correct |
50 |
Correct |
26 ms |
1144 KB |
correct |
51 |
Correct |
36 ms |
1528 KB |
correct |
52 |
Correct |
34 ms |
1400 KB |
correct |
53 |
Correct |
33 ms |
1272 KB |
correct |
54 |
Correct |
38 ms |
1528 KB |
correct |
55 |
Correct |
40 ms |
1400 KB |
correct |
56 |
Correct |
40 ms |
1400 KB |
correct |
57 |
Correct |
40 ms |
1400 KB |
correct |
# |
Verdict |
Execution time |
Memory |
Grader output |
1 |
Correct |
6 ms |
632 KB |
correct |
2 |
Correct |
5 ms |
376 KB |
correct |
3 |
Correct |
149 ms |
4344 KB |
correct |
4 |
Correct |
260 ms |
6008 KB |
correct |
5 |
Correct |
233 ms |
6008 KB |
correct |
6 |
Correct |
229 ms |
6008 KB |
correct |
7 |
Correct |
197 ms |
6012 KB |
correct |
8 |
Correct |
206 ms |
6008 KB |
correct |
9 |
Correct |
232 ms |
6008 KB |
correct |
10 |
Correct |
236 ms |
6136 KB |
correct |
11 |
Correct |
227 ms |
6008 KB |
correct |
12 |
Correct |
228 ms |
6008 KB |
correct |
13 |
Correct |
5 ms |
380 KB |
correct |
14 |
Correct |
219 ms |
6008 KB |
correct |
15 |
Correct |
229 ms |
6088 KB |
correct |
# |
Verdict |
Execution time |
Memory |
Grader output |
1 |
Correct |
5 ms |
376 KB |
correct |
2 |
Correct |
5 ms |
376 KB |
correct |
3 |
Correct |
5 ms |
376 KB |
correct |
4 |
Correct |
5 ms |
376 KB |
correct |
5 |
Correct |
5 ms |
376 KB |
correct |
6 |
Correct |
5 ms |
376 KB |
correct |
7 |
Correct |
5 ms |
376 KB |
correct |
8 |
Correct |
6 ms |
376 KB |
correct |
9 |
Correct |
5 ms |
376 KB |
correct |
10 |
Correct |
5 ms |
376 KB |
correct |
11 |
Correct |
5 ms |
376 KB |
correct |
12 |
Correct |
5 ms |
376 KB |
correct |
13 |
Correct |
5 ms |
376 KB |
correct |
14 |
Correct |
8 ms |
504 KB |
correct |
15 |
Correct |
7 ms |
504 KB |
correct |
16 |
Correct |
7 ms |
508 KB |
correct |
17 |
Correct |
7 ms |
632 KB |
correct |
18 |
Correct |
6 ms |
504 KB |
correct |
19 |
Correct |
7 ms |
504 KB |
correct |
20 |
Correct |
7 ms |
504 KB |
correct |
21 |
Correct |
8 ms |
504 KB |
correct |
22 |
Correct |
6 ms |
504 KB |
correct |
23 |
Correct |
6 ms |
504 KB |
correct |
24 |
Correct |
6 ms |
504 KB |
correct |
25 |
Correct |
5 ms |
504 KB |
correct |
26 |
Correct |
6 ms |
504 KB |
correct |
27 |
Correct |
6 ms |
504 KB |
correct |
28 |
Correct |
6 ms |
504 KB |
correct |
29 |
Correct |
6 ms |
504 KB |
correct |
30 |
Correct |
7 ms |
504 KB |
correct |
31 |
Correct |
6 ms |
504 KB |
correct |
32 |
Correct |
6 ms |
508 KB |
correct |
33 |
Correct |
6 ms |
504 KB |
correct |
34 |
Correct |
50 ms |
2040 KB |
correct |
35 |
Correct |
51 ms |
1912 KB |
correct |
36 |
Correct |
45 ms |
1784 KB |
correct |
37 |
Correct |
21 ms |
888 KB |
correct |
38 |
Correct |
51 ms |
2008 KB |
correct |
39 |
Correct |
47 ms |
1912 KB |
correct |
40 |
Correct |
43 ms |
1784 KB |
correct |
41 |
Correct |
54 ms |
2040 KB |
correct |
42 |
Correct |
52 ms |
2040 KB |
correct |
43 |
Correct |
37 ms |
1528 KB |
correct |
44 |
Correct |
36 ms |
1400 KB |
correct |
45 |
Correct |
37 ms |
1532 KB |
correct |
46 |
Correct |
34 ms |
1272 KB |
correct |
47 |
Correct |
26 ms |
1144 KB |
correct |
48 |
Correct |
12 ms |
888 KB |
correct |
49 |
Correct |
19 ms |
888 KB |
correct |
50 |
Correct |
26 ms |
1144 KB |
correct |
51 |
Correct |
36 ms |
1528 KB |
correct |
52 |
Correct |
34 ms |
1400 KB |
correct |
53 |
Correct |
33 ms |
1272 KB |
correct |
54 |
Correct |
38 ms |
1528 KB |
correct |
55 |
Correct |
40 ms |
1400 KB |
correct |
56 |
Correct |
40 ms |
1400 KB |
correct |
57 |
Correct |
40 ms |
1400 KB |
correct |
58 |
Correct |
6 ms |
632 KB |
correct |
59 |
Correct |
5 ms |
376 KB |
correct |
60 |
Correct |
149 ms |
4344 KB |
correct |
61 |
Correct |
260 ms |
6008 KB |
correct |
62 |
Correct |
233 ms |
6008 KB |
correct |
63 |
Correct |
229 ms |
6008 KB |
correct |
64 |
Correct |
197 ms |
6012 KB |
correct |
65 |
Correct |
206 ms |
6008 KB |
correct |
66 |
Correct |
232 ms |
6008 KB |
correct |
67 |
Correct |
236 ms |
6136 KB |
correct |
68 |
Correct |
227 ms |
6008 KB |
correct |
69 |
Correct |
228 ms |
6008 KB |
correct |
70 |
Correct |
5 ms |
380 KB |
correct |
71 |
Correct |
219 ms |
6008 KB |
correct |
72 |
Correct |
229 ms |
6088 KB |
correct |
73 |
Correct |
5 ms |
376 KB |
correct |
74 |
Correct |
237 ms |
6136 KB |
correct |
75 |
Correct |
226 ms |
5880 KB |
correct |
76 |
Correct |
122 ms |
2936 KB |
correct |
77 |
Correct |
236 ms |
6136 KB |
correct |
78 |
Correct |
222 ms |
6008 KB |
correct |
79 |
Correct |
229 ms |
6008 KB |
correct |
80 |
Correct |
229 ms |
6008 KB |
correct |
81 |
Correct |
193 ms |
5496 KB |
correct |
82 |
Correct |
225 ms |
5880 KB |
correct |
83 |
Correct |
178 ms |
4008 KB |
correct |
84 |
Correct |
168 ms |
4476 KB |
correct |
85 |
Correct |
162 ms |
4216 KB |
correct |
86 |
Correct |
137 ms |
3192 KB |
correct |
87 |
Correct |
118 ms |
2808 KB |
correct |
88 |
Correct |
113 ms |
2428 KB |
correct |
89 |
Correct |
115 ms |
2428 KB |
correct |
90 |
Correct |
106 ms |
2296 KB |
correct |
91 |
Correct |
58 ms |
1528 KB |
correct |
92 |
Correct |
36 ms |
1400 KB |
correct |
93 |
Correct |
156 ms |
4216 KB |
correct |
94 |
Correct |
142 ms |
3312 KB |
correct |
95 |
Correct |
139 ms |
3192 KB |
correct |
96 |
Correct |
110 ms |
2296 KB |
correct |
97 |
Correct |
112 ms |
2424 KB |
correct |
98 |
Correct |
134 ms |
2808 KB |
correct |
99 |
Correct |
110 ms |
2424 KB |
correct |
100 |
Correct |
78 ms |
1656 KB |
correct |
101 |
Correct |
47 ms |
1528 KB |
correct |
102 |
Correct |
177 ms |
3832 KB |
correct |
103 |
Correct |
173 ms |
3832 KB |
correct |
104 |
Correct |
173 ms |
3792 KB |
correct |
105 |
Correct |
174 ms |
3704 KB |
correct |