#pragma GCC optimize ("O3")
#pragma GCC target ("sse4")
#include <bits/stdc++.h>
using namespace std;
typedef double db;
typedef long long ll;
typedef long double ld;
typedef string str;
typedef pair<int, int> pi;
typedef pair<ll,ll> pl;
typedef pair<ld,ld> pd;
typedef complex<ld> cd;
typedef vector<int> vi;
typedef vector<ll> vl;
typedef vector<ld> vd;
typedef vector<str> vs;
typedef vector<pi> vpi;
typedef vector<pl> vpl;
typedef vector<cd> vcd;
#define FOR(i,a,b) for (int i = (a); i < (b); i++)
#define F0R(i,a) FOR(i,0,a)
#define ROF(i,a,b) for (int i = (b)-1; i >= (a); i--)
#define R0F(i,a) ROF(i,0,a)
#define trav(a,x) for (auto& a : x)
#define mp make_pair
#define pb push_back
#define eb emplace_back
#define f first
#define s second
#define lb lower_bound
#define ub upper_bound
#define sz(x) (int)x.size()
#define all(x) begin(x), end(x)
#define rall(x) rbegin(x), rend(x)
#define rsz resize
#define ins insert
const int MOD = 1e9+7; // 998244353 = (119<<23)+1
const ll INF = 1e18;
const int MX = 2e5+5;
const ld PI = 4*atan((ld)1);
template<class T> bool ckmin(T& a, const T& b) { return a > b ? a = b, 1 : 0; }
template<class T> bool ckmax(T& a, const T& b) { return a < b ? a = b, 1 : 0; }
mt19937 rng(chrono::steady_clock::now().time_since_epoch().count());
#include <ext/pb_ds/tree_policy.hpp>
#include <ext/pb_ds/assoc_container.hpp>
#include <ext/rope>
using namespace __gnu_pbds;
using namespace __gnu_cxx;
template <class T> using Tree = tree<T, null_type, less<T>, rb_tree_tag, tree_order_statistics_node_update>;
#define ook order_of_key
#define fbo find_by_order
namespace input {
template<class T> void re(complex<T>& x);
template<class T1, class T2> void re(pair<T1,T2>& p);
template<class T> void re(vector<T>& a);
template<class T, size_t SZ> void re(array<T,SZ>& a);
template<class T> void re(T& x) { cin >> x; }
void re(double& x) { string t; re(t); x = stod(t); }
void re(ld& x) { string t; re(t); x = stold(t); }
template<class T, class... Ts> void re(T& t, Ts&... ts) {
re(t); re(ts...);
}
template<class T> void re(complex<T>& x) { T a,b; re(a,b); x = cd(a,b); }
template<class T1, class T2> void re(pair<T1,T2>& p) { re(p.f,p.s); }
template<class T> void re(vector<T>& a) { F0R(i,sz(a)) re(a[i]); }
template<class T, size_t SZ> void re(array<T,SZ>& a) { F0R(i,SZ) re(a[i]); }
}
using namespace input;
namespace output {
void pr(int x) { cout << x; }
void pr(long x) { cout << x; }
void pr(ll x) { cout << x; }
void pr(unsigned x) { cout << x; }
void pr(unsigned long x) { cout << x; }
void pr(unsigned long long x) { cout << x; }
void pr(float x) { cout << x; }
void pr(double x) { cout << x; }
void pr(ld x) { cout << x; }
void pr(char x) { cout << x; }
void pr(const char* x) { cout << x; }
void pr(const string& x) { cout << x; }
void pr(bool x) { pr(x ? "true" : "false"); }
template<class T> void pr(const complex<T>& x) { cout << x; }
template<class T1, class T2> void pr(const pair<T1,T2>& x);
template<class T> void pr(const T& x);
template<class T, class... Ts> void pr(const T& t, const Ts&... ts) {
pr(t); pr(ts...);
}
template<class T1, class T2> void pr(const pair<T1,T2>& x) {
pr("{",x.f,", ",x.s,"}");
}
template<class T> void pr(const T& x) {
pr("{"); // const iterator needed for vector<bool>
bool fst = 1; for (const auto& a: x) pr(!fst?", ":"",a), fst = 0;
pr("}");
}
void ps() { pr("\n"); } // print w/ spaces
template<class T, class... Ts> void ps(const T& t, const Ts&... ts) {
pr(t); if (sizeof...(ts)) pr(" "); ps(ts...);
}
void pc() { pr("]\n"); } // debug w/ commas
template<class T, class... Ts> void pc(const T& t, const Ts&... ts) {
pr(t); if (sizeof...(ts)) pr(", "); pc(ts...);
}
#define dbg(x...) pr("[",#x,"] = ["), pc(x);
}
using namespace output;
namespace io {
void setIn(string s) { freopen(s.c_str(),"r",stdin); }
void setOut(string s) { freopen(s.c_str(),"w",stdout); }
void setIO(string s = "") {
cin.sync_with_stdio(0); cin.tie(0); // fast I/O
cin.exceptions(cin.failbit); // ex. throws exception when you try to read letter into int
if (sz(s)) { setIn(s+".in"), setOut(s+".out"); } // for USACO
}
}
using namespace io;
template<class T> T invGeneral(T a, T b) {
a %= b; if (a == 0) return b == 1 ? 0 : -1;
T x = invGeneral(b,a);
return x == -1 ? -1 : ((1-(ll)b*x)/a+b)%b;
}
template<class T> struct modular {
T val;
explicit operator T() const { return val; }
modular() { val = 0; }
modular(const ll& v) {
val = (-MOD <= v && v <= MOD) ? v : v % MOD;
if (val < 0) val += MOD;
}
// friend ostream& operator<<(ostream& os, const modular& a) { return os << a.val; }
friend void pr(const modular& a) { pr(a.val); }
friend void re(modular& a) { ll x; re(x); a = modular(x); }
friend bool operator==(const modular& a, const modular& b) { return a.val == b.val; }
friend bool operator!=(const modular& a, const modular& b) { return !(a == b); }
friend bool operator<(const modular& a, const modular& b) { return a.val < b.val; }
modular operator-() const { return modular(-val); }
modular& operator+=(const modular& m) { if ((val += m.val) >= MOD) val -= MOD; return *this; }
modular& operator-=(const modular& m) { if ((val -= m.val) < 0) val += MOD; return *this; }
modular& operator*=(const modular& m) { val = (ll)val*m.val%MOD; return *this; }
friend modular pow(modular a, ll p) {
modular ans = 1; for (; p; p /= 2, a *= a) if (p&1) ans *= a;
return ans;
}
friend modular inv(const modular& a) {
auto i = invGeneral(a.val,MOD); assert(i != -1);
return i;
} // equivalent to return exp(b,MOD-2) if MOD is prime
modular& operator/=(const modular& m) { return (*this) *= inv(m); }
friend modular operator+(modular a, const modular& b) { return a += b; }
friend modular operator-(modular a, const modular& b) { return a -= b; }
friend modular operator*(modular a, const modular& b) { return a *= b; }
friend modular operator/(modular a, const modular& b) { return a /= b; }
};
typedef modular<int> mi;
typedef pair<mi,mi> pmi;
typedef vector<mi> vmi;
typedef vector<pmi> vpmi;
mi tpows[100005][4]; //non3non1, non3 1, 3non1, 31
/**
* Description: 1D point update, range query. \texttt{comb}
* can be any associative operation. $N$ doesn't have to be a power of 2
* (but then \texttt{seg[1]} might not equal \texttt{query(0,N-1)}).
* Time: O(\log N)
* Source:
* http://codeforces.com/blog/entry/18051
* KACTL
* Verification: SPOJ Fenwick
*/
typedef pair<array<mi, 4>, array<int, 4>> T;
//non3non1, non3 1, 3non1, 31
//contain 13? end with 1? Start with 3? size
struct Seg {
const T ID = {{0, 0, 0, 0}, {-1, -1, -1, -1}}; // comb(ID,b) must equal b
T comb(T a, T b) {
if(a.s[0] == -1){
return b;
}
if(b.s[0] == -1) return a;
T c = ID;
c.s[3] = a.s[3]+b.s[3];
if(a.s[0] == 1 || b.s[0] == 1 || (a.s[1] == 1 && b.s[2] == 1)){
c.s[0] = 1;
}
else c.s[0] = 0;
if(b.s[1] == 1){
c.s[1] = 1;
}
else c.s[1] = 0;
if(a.s[2] == 1){
c.s[2] = 1;
}
else c.s[2] = 0;
//now update the first parts
if(a.s[0] == 0){
if(a.s[1] == 0 && a.s[2] == 0){
//22
//take care of equality cases
c.f[0]+=b.f[0]+b.f[2];
c.f[1]+=b.f[1]+b.f[3];
a.f[0]-=1;
}
else if(a.s[1] == 1 && a.s[2] == 0){
//21
c.f[0]+=b.f[0];
c.f[1]+=b.f[1];
a.f[1]-=1;
}
else if(a.s[1] == 0 && a.s[2] == 1){
//32
c.f[2]+=b.f[0]+b.f[2];
c.f[3]+=b.f[1]+b.f[3];
a.f[2]-=1;
}
else if(a.s[1] == 1 && a.s[2] == 1){
//31
c.f[2]+=b.f[0];
c.f[3]+=b.f[1];
a.f[3]-=1;
}
}
int bsz = b.s[3];
c.f[0]+=a.f[0]*(tpows[bsz][0]+tpows[bsz][2])+a.f[1]*(tpows[bsz][0]);
c.f[1]+=a.f[0]*(tpows[bsz][1]+tpows[bsz][3])+a.f[1]*(tpows[bsz][1]);
c.f[2]+=a.f[2]*(tpows[bsz][0]+tpows[bsz][2])+a.f[3]*(tpows[bsz][0]);
c.f[3]+=a.f[2]*(tpows[bsz][1]+tpows[bsz][3])+a.f[3]*(tpows[bsz][1]);
return c;
}
int n; vector<T> seg;
void init(int _n) { n = _n; seg.assign(2*n,ID); }
void pull(int p) { seg[p] = comb(seg[2*p],seg[2*p+1]); }
void upd(int p, int value) { // set value at position p
p+=n;
seg[p].f = {mi(value+1), 0, 0, 0};
if(value >= 1){
seg[p].f[0]-=1;
seg[p].f[1]+=1;
}
if(value >= 3){
seg[p].f[0]-=1;
seg[p].f[2]+=1;
}
if(value == 1){
seg[p].s = {0, 1, 0, 1};
}
else if(value == 3){
seg[p].s = {0, 0, 1, 1};
}
else{
seg[p].s = {0, 0, 0, 1};
}
for (p /= 2; p; p /= 2) pull(p);
}
T query(int l, int r) { // sum on interval [l, r]
T ra = ID, rb = ID;
for (l += n, r += n+1; l < r; l /= 2, r /= 2) {
if (l&1) ra = comb(ra,seg[l++]);
if (r&1) rb = comb(seg[--r],rb);
}
return comb(ra,rb);
}
};
Seg tre;
int main() {
setIO();
// you should actually read the stuff at the bottom
tpows[1][0] = 8;
tpows[1][1] = 1;
tpows[1][2] = 1;
tpows[1][3] = 0;
for(int i = 2; i < 100005; i++){
//make first thing non1, non3
tpows[i][0]+=8*(tpows[i-1][0]+tpows[i-1][2]);
tpows[i][1]+=8*(tpows[i-1][1]+tpows[i-1][3]);
//make first thing 1
tpows[i][0]+=tpows[i-1][0];
tpows[i][1]+=tpows[i-1][1];
//make first thing 3
tpows[i][2]+=tpows[i-1][0]+tpows[i-1][2];
tpows[i][3]+=tpows[i-1][1]+tpows[i-1][3];
}
int N, Q;
cin >> N >> Q;
tre.init(N+5);
string X;
cin >> X;
for(int i = 1; i <= sz(X); i++){
tre.upd(i, X[i-1]-'0');
}
T c;
mi ans;
c = tre.query(1, N);
ans = c.f[0]+c.f[1]+c.f[2]+c.f[3];
ps(int(ans));
for(int i = 0; i < Q; i++){
int t;
cin >> t;
if(t == 1){
int radixL, radixR;
cin >> radixL >> radixR;
c = tre.query(radixL, radixR);
ans = c.f[0]+c.f[1]+c.f[2]+c.f[3];
ps(int(ans));
}
else{
int radix, newDigit;
cin >> radix >> newDigit;
tre.upd(radix, newDigit);
}
}
}
/* stuff you should look for
* int overflow, array bounds
* special cases (n=1?), set tle
* do smth instead of nothing and stay organized
*/
Compilation message
lucky.cpp: In function 'void io::setIn(std::__cxx11::string)':
lucky.cpp:135:35: warning: ignoring return value of 'FILE* freopen(const char*, const char*, FILE*)', declared with attribute warn_unused_result [-Wunused-result]
void setIn(string s) { freopen(s.c_str(),"r",stdin); }
~~~~~~~^~~~~~~~~~~~~~~~~~~~~
lucky.cpp: In function 'void io::setOut(std::__cxx11::string)':
lucky.cpp:136:36: warning: ignoring return value of 'FILE* freopen(const char*, const char*, FILE*)', declared with attribute warn_unused_result [-Wunused-result]
void setOut(string s) { freopen(s.c_str(),"w",stdout); }
~~~~~~~^~~~~~~~~~~~~~~~~~~~~~
# |
결과 |
실행 시간 |
메모리 |
Grader output |
1 |
Correct |
8 ms |
1912 KB |
Output is correct |
2 |
Correct |
9 ms |
1912 KB |
Output is correct |
3 |
Correct |
9 ms |
1912 KB |
Output is correct |
# |
결과 |
실행 시간 |
메모리 |
Grader output |
1 |
Correct |
8 ms |
1912 KB |
Output is correct |
2 |
Correct |
9 ms |
1912 KB |
Output is correct |
3 |
Correct |
9 ms |
1912 KB |
Output is correct |
4 |
Correct |
8 ms |
1912 KB |
Output is correct |
5 |
Correct |
8 ms |
1912 KB |
Output is correct |
6 |
Correct |
8 ms |
1912 KB |
Output is correct |
# |
결과 |
실행 시간 |
메모리 |
Grader output |
1 |
Correct |
19 ms |
2552 KB |
Output is correct |
2 |
Correct |
21 ms |
2812 KB |
Output is correct |
# |
결과 |
실행 시간 |
메모리 |
Grader output |
1 |
Correct |
19 ms |
2552 KB |
Output is correct |
2 |
Correct |
21 ms |
2812 KB |
Output is correct |
3 |
Correct |
59 ms |
7416 KB |
Output is correct |
4 |
Correct |
56 ms |
7416 KB |
Output is correct |
5 |
Correct |
66 ms |
8056 KB |
Output is correct |
6 |
Correct |
79 ms |
8824 KB |
Output is correct |
7 |
Correct |
72 ms |
8824 KB |
Output is correct |
# |
결과 |
실행 시간 |
메모리 |
Grader output |
1 |
Correct |
8 ms |
1912 KB |
Output is correct |
2 |
Correct |
9 ms |
1912 KB |
Output is correct |
3 |
Correct |
9 ms |
1912 KB |
Output is correct |
4 |
Correct |
8 ms |
1912 KB |
Output is correct |
5 |
Correct |
8 ms |
1912 KB |
Output is correct |
6 |
Correct |
8 ms |
1912 KB |
Output is correct |
7 |
Correct |
19 ms |
2552 KB |
Output is correct |
8 |
Correct |
21 ms |
2812 KB |
Output is correct |
9 |
Correct |
19 ms |
2552 KB |
Output is correct |
10 |
Correct |
22 ms |
2680 KB |
Output is correct |
# |
결과 |
실행 시간 |
메모리 |
Grader output |
1 |
Correct |
8 ms |
1912 KB |
Output is correct |
2 |
Correct |
9 ms |
1912 KB |
Output is correct |
3 |
Correct |
9 ms |
1912 KB |
Output is correct |
4 |
Correct |
8 ms |
1912 KB |
Output is correct |
5 |
Correct |
8 ms |
1912 KB |
Output is correct |
6 |
Correct |
8 ms |
1912 KB |
Output is correct |
7 |
Correct |
19 ms |
2552 KB |
Output is correct |
8 |
Correct |
21 ms |
2812 KB |
Output is correct |
9 |
Correct |
59 ms |
7416 KB |
Output is correct |
10 |
Correct |
56 ms |
7416 KB |
Output is correct |
11 |
Correct |
66 ms |
8056 KB |
Output is correct |
12 |
Correct |
79 ms |
8824 KB |
Output is correct |
13 |
Correct |
72 ms |
8824 KB |
Output is correct |
14 |
Correct |
19 ms |
2552 KB |
Output is correct |
15 |
Correct |
22 ms |
2680 KB |
Output is correct |
16 |
Correct |
59 ms |
7416 KB |
Output is correct |
17 |
Correct |
57 ms |
7420 KB |
Output is correct |
18 |
Correct |
62 ms |
8056 KB |
Output is correct |
19 |
Correct |
77 ms |
8660 KB |
Output is correct |
20 |
Correct |
69 ms |
8696 KB |
Output is correct |