Submission #19711

# Submission time Handle Problem Language Result Execution time Memory
19711 2016-02-25T04:51:46 Z emppu 팔찌 (kriii4_V) C++14
100 / 100
226 ms 60316 KB
#define _CRT_SECURE_NO_WARNINGS
#include <iostream>
#include <cstdio>
#include <cmath>
#include <cstdlib>
#include <ctime>
#include <cstring>
#include <cassert>

#include <algorithm>
#include <vector>
#include <string>
#include <set>
#include <map>
#include <queue>
#include <deque>
#include <list>
#include <bitset>
#include <tuple>

using namespace std;

#define f0(_X,_Y) for(int (_X)=0;(_X)<(_Y);++(_X))
#define f1(_X,_Y) for(int (_X)=1;(_X)<=(_Y);++(_X))
#define ff(_X,_Y,_Z) for(int (_X)=(_Y);(_X)<=(_Z);++(_X))
#define fF(_X,_Y,_Z) for(int (_X)=(_Y);(_X)<(_Z);++(_X))
#define rf0(_X,_Y) for(int _X=(_Y)-1;(_X)>=0;--(_X))
#define rf1(_X,_Y) for(int _X=(_Y);(_X)>0;--(_X))
#define rff(_X,_Y,_Z) for(int _X=(_Y);(_X)>=(_Z);--(_X))
#define rfF(_X,_Y,_Z) for(int _X=(_Y);(_X)>(_Z);--(_X))
#define PRT(_X) std::cout<< #_X ": "<<_X<<std::endl;

#define scan1(_X) scanf("%d",&_X);
#define scan2(_X,_Y) scanf("%d%d",&_X,&_Y);
#define scan3(_X,_Y,_Z) scanf("%d%d%d",&_X,&_Y,&_Z);
#define define1(_1) int _1; scan1(_1)
#define define2(_1,_2) int _1,_2; scan2(_1,_2)
#define define3(_1,_2,_3) int _1,_2,_3; scan3(_1,_2,_3)
#define EXPAND(_1) _1
#define SELECT(_1,_2,_3,_4,NAME,...) NAME
#define scan(...) EXPAND(SELECT(__VA_ARGS__, scan4, scan3, scan2, scan1)(__VA_ARGS__))
#define define(...) EXPAND(SELECT(__VA_ARGS__, define4, define3, define2, define1)(__VA_ARGS__))
#define print(_X) printf("%d\n",_X)
#define PAIR_STRUCT(_T,_X,_Y,...) struct _T{int _X,_Y,##__VA_ARGS__; bool friend operator < (const _T &p, const _T &q){if(p._X!=q._X) return p._X<q._X; return p._Y<q._Y;}}

typedef long long ll;

const int MOD = 1000000007;
ll inv(ll a, ll b=MOD)
{
	ll s = 0;  ll  old_s = 1;
	ll r = b;  ll  old_r = a;
	while (r!=0)
	{
		ll quotient = old_r / r;
		tie(old_r, r) = make_tuple(r, old_r - quotient * r);
		tie(old_s, s) = make_tuple(s, old_s - quotient * s);
	}
	ll inv = old_s%MOD;
	if(inv<0) inv += MOD;
	return inv;
}

const int N = 1000005;
ll pi[N];
ll power[N];
ll s[N];
ll in[N];
int dv[N];
vector<int> d[N];

ll mul(ll a, ll b){return a*b%MOD;}
ll add(ll a, ll b){return (a+b)%MOD;}

int main()
{
	define(n,color);
	// divisors
	ff(i,2,n)
	{
		for(int j=i;j<=n;j+=i) if(!dv[j]) dv[j]=i;
	}
	// inverse
	in[1]=1;
	ff(i,2,n)
	{
		if(dv[i]!=i)
			in[i]=  mul(in[dv[i]],in[i/dv[i]]);
		else
			in[i]= inv(i);
	}
	// euler
	pi[1]=1;
	ff(i,2,n)
	{
		int num = i;
		while(num%dv[i]==0) num/=dv[i];

		if(num==1)
			pi[i]=i/dv[i]*(dv[i]-1);
		else
			pi[i] = pi[num]*pi[i/num];
	}

	// a^?
	power[0]=1;
	f1(i,n)
		power[i]=mul(power[i-1],color);

	const ll two = inv(2);

	ll ans=1;
	f1(divisor,n)
	{
		for(int i=divisor;i<=n;i+=divisor)
			s[i]+=pi[divisor]*power[i/divisor];
	}
	f1(i,n)
	{
		ll sum = 0;
		sum = s[i]%MOD;

		if(i&1)
			sum=add(sum,mul(i,power[(i+1)/2]));
		else
		{
			ll term = mul(two,i);
			term = mul(term, 1+color);
			term = mul(term, power[i/2]);
			sum=add(sum,term);
		}
		ans+=mul(sum,mul(two,in[i]));
	}
	ans %= MOD;
	printf("%lld\n",ans);
	return 0;
}
# Verdict Execution time Memory Grader output
1 Correct 6 ms 60316 KB Output is correct
2 Correct 0 ms 60316 KB Output is correct
3 Correct 6 ms 60316 KB Output is correct
4 Correct 6 ms 60316 KB Output is correct
5 Correct 3 ms 60316 KB Output is correct
6 Correct 3 ms 60316 KB Output is correct
7 Correct 6 ms 60316 KB Output is correct
8 Correct 4 ms 60316 KB Output is correct
9 Correct 4 ms 60316 KB Output is correct
10 Correct 4 ms 60316 KB Output is correct
11 Correct 3 ms 60316 KB Output is correct
12 Correct 0 ms 60316 KB Output is correct
13 Correct 5 ms 60316 KB Output is correct
14 Correct 0 ms 60316 KB Output is correct
15 Correct 6 ms 60316 KB Output is correct
16 Correct 6 ms 60316 KB Output is correct
17 Correct 4 ms 60316 KB Output is correct
18 Correct 3 ms 60316 KB Output is correct
19 Correct 9 ms 60316 KB Output is correct
20 Correct 5 ms 60316 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 4 ms 60316 KB Output is correct
2 Correct 3 ms 60316 KB Output is correct
3 Correct 6 ms 60316 KB Output is correct
4 Correct 12 ms 60316 KB Output is correct
5 Correct 139 ms 60316 KB Output is correct
6 Correct 162 ms 60316 KB Output is correct
7 Correct 139 ms 60316 KB Output is correct
8 Correct 167 ms 60316 KB Output is correct
9 Correct 176 ms 60316 KB Output is correct
10 Correct 208 ms 60316 KB Output is correct
11 Correct 189 ms 60316 KB Output is correct
12 Correct 209 ms 60316 KB Output is correct
13 Correct 125 ms 60316 KB Output is correct
14 Correct 201 ms 60316 KB Output is correct
15 Correct 121 ms 60316 KB Output is correct
16 Correct 144 ms 60316 KB Output is correct
17 Correct 216 ms 60316 KB Output is correct
18 Correct 129 ms 60316 KB Output is correct
19 Correct 162 ms 60316 KB Output is correct
20 Correct 226 ms 60316 KB Output is correct