# |
Submission time |
Handle |
Problem |
Language |
Result |
Execution time |
Memory |
19282 |
2016-02-24T02:41:02 Z |
kaTkaHr |
비트 (kriii4_Q) |
C++14 |
|
167 ms |
1948 KB |
#include <stdio.h>
#include<vector>
#include <algorithm>
#include <map>
using namespace std;
typedef long long ll;
const int MX = 105, MM = 1000000007;
ll pw(ll A, ll B){
ll R = 1;
while(B){
if( B&1 ) R = R * A % MM;
A = A * A % MM; B /= 2;
}
return R;
}
ll rv(ll A){ return pw(A, MM-2); }
//*
struct frac{
ll A, B;
frac(ll A):A(A), B(1){}
frac(ll a, ll b){
A = (a%MM+MM) % MM;
B = (b%MM+MM) % MM;
}
frac(){A = 0, B = 1;}
frac operator+ (const frac &l)const{
return frac((A * l.B + B * l.A) % MM, B * l.B % MM);
}
frac operator*(const frac &l)const{
return frac(A*l.A % MM, B*l.B % MM);
}
frac operator/(const frac &l)const{
return frac(A*l.B % MM, B*l.A % MM);
}
frac operator- (const frac &l)const{
return frac((A*l.B - B*l.A%MM + MM) % MM, B*l.B % MM);
}
ll v(){ return A * rv(B) % MM; }
};// */
/*
struct frac{
ll A;
frac(ll A):A((A%MM+MM)%MM){}
frac(ll a, ll b){
a = (a%MM+MM)%MM;
b = (b%MM+MM)%MM;
A = rv(b) * a % MM;
}
frac(){A = 0;}
frac operator+ (const frac &l)const{
return l.A + A >= MM? l.A + A - MM: l.A + A;
}
frac operator*(const frac &l)const{
return l.A * A % MM;
}
frac operator/(const frac &l)const{
return A * rv(l.A) % MM;
}
frac operator- (const frac &l)const{
return A >= l.A? A-l.A: A-l.A + MM;
}
ll v(){ return A; }
};// */
frac pw(frac A, ll B){
frac R = 1;
while(B){
if( B&1 ) R = R * A;
A = A * A; B /= 2;
}
return R;
}
frac D[MX][MX], I[MX][MX], A[MX][MX], R[MX][MX], S[MX][MX];
int N, K;
void make_matrix(frac A[MX][MX])
{
for(int i = 0; i <= N; i++){
if( i <= N-2 ) A[i][i+1] = frac(i+1, N);
if( i >= 1) A[i][i-1] = frac(N-i+1, N);
}
}
int main()
{
scanf("%d%d", &N, &K);
make_matrix(A);
for(int i = 0; i <= N; i++){
I[i][i] = 1;
for(int j = 0; j <= N; j++){
if( i != j ) D[i][j] = frac(0, 1) - A[i][j];
else D[i][i] = 1;
}
}
for(int i = 0; i <= N; i++){
for(int j = i+1; j <= N; j++){
frac p = D[j][i] / D[i][i];
for(int k = 0; k <= N; k++){
D[j][k] = D[j][k] - D[i][k] * p;
I[j][k] = I[j][k] - I[i][k] * p;
}
}
}
for(int i = N; i >= 0; i--){
for(int j = i-1; j >= 0; j--){
frac p = D[j][i] / D[i][i];
for(int k = N; k >= 0; k--){
D[j][k] = D[j][k] - D[i][k] * p;
I[j][k] = I[j][k] - I[i][k] * p;
}
}
}
for(int i = 0; i <= N; i++){
frac p = frac(1, 1) / D[i][i];
for(int j = 0; j <= N; j++){
D[i][j] = D[i][j] * p;
I[i][j] = I[i][j] * p;
}
}
for(int i = 0; i <= N; i++){
for(int j = 0; j <= N; j++){
R[i][j] = 0;
for(int k = 0; k <= N; k++){
R[i][j] = R[i][j] + I[i][k] * A[k][j];
}
}
}
for(int i = 0; i <= N; i++){
for(int j = 0; j <= N; j++){
S[i][j] = 0;
for(int k = 0; k <= N; k++){
S[i][j] = S[i][j] + R[i][k] * I[k][j];
}
}
}
for(int i = N-1; i >= 0; i--){
printf("%lld\n", S[N][i].v());
}
}
# |
Verdict |
Execution time |
Memory |
Grader output |
1 |
Correct |
36 ms |
1948 KB |
Output is correct |
2 |
Correct |
101 ms |
1948 KB |
Output is correct |
3 |
Correct |
0 ms |
1948 KB |
Output is correct |
4 |
Correct |
11 ms |
1948 KB |
Output is correct |
5 |
Correct |
159 ms |
1948 KB |
Output is correct |
6 |
Correct |
3 ms |
1948 KB |
Output is correct |
7 |
Correct |
23 ms |
1948 KB |
Output is correct |
8 |
Correct |
79 ms |
1948 KB |
Output is correct |
9 |
Correct |
0 ms |
1948 KB |
Output is correct |
10 |
Correct |
3 ms |
1948 KB |
Output is correct |
11 |
Correct |
34 ms |
1948 KB |
Output is correct |
12 |
Correct |
105 ms |
1948 KB |
Output is correct |
13 |
Correct |
0 ms |
1948 KB |
Output is correct |
14 |
Correct |
55 ms |
1948 KB |
Output is correct |
15 |
Correct |
154 ms |
1948 KB |
Output is correct |
16 |
Correct |
3 ms |
1948 KB |
Output is correct |
17 |
Correct |
22 ms |
1948 KB |
Output is correct |
18 |
Correct |
78 ms |
1948 KB |
Output is correct |
19 |
Correct |
167 ms |
1948 KB |
Output is correct |
20 |
Correct |
6 ms |
1948 KB |
Output is correct |
# |
Verdict |
Execution time |
Memory |
Grader output |
1 |
Incorrect |
12 ms |
1948 KB |
Output isn't correct |
2 |
Halted |
0 ms |
0 KB |
- |