#pragma GCC optimize ("O3")
#pragma GCC target ("sse4")
#include <bits/stdc++.h>
using namespace std;
typedef double db;
typedef long long ll;
typedef long double ld;
typedef string str;
typedef pair<int, int> pi;
typedef pair<ll,ll> pl;
typedef pair<ld,ld> pd;
typedef complex<ld> cd;
typedef vector<int> vi;
typedef vector<ll> vl;
typedef vector<ld> vd;
typedef vector<str> vs;
typedef vector<pi> vpi;
typedef vector<pl> vpl;
typedef vector<cd> vcd;
#define FOR(i,a,b) for (int i = (a); i < (b); i++)
#define F0R(i,a) FOR(i,0,a)
#define ROF(i,a,b) for (int i = (b)-1; i >= (a); i--)
#define R0F(i,a) ROF(i,0,a)
#define trav(a,x) for (auto& a : x)
#define mp make_pair
#define pb push_back
#define eb emplace_back
#define f first
#define s second
#define lb lower_bound
#define ub upper_bound
#define sz(x) (int)x.size()
#define all(x) begin(x), end(x)
#define rall(x) rbegin(x), rend(x)
#define rsz resize
#define ins insert
const int MOD = 1e9+7; // 998244353 = (119<<23)+1
const ll INF = 1e18;
const int MX = 2e5+5;
const ld PI = 4*atan((ld)1);
template<class T> bool ckmin(T& a, const T& b) { return a > b ? a = b, 1 : 0; }
template<class T> bool ckmax(T& a, const T& b) { return a < b ? a = b, 1 : 0; }
mt19937 rng(chrono::steady_clock::now().time_since_epoch().count());
#include <ext/pb_ds/tree_policy.hpp>
#include <ext/pb_ds/assoc_container.hpp>
#include <ext/rope>
using namespace __gnu_pbds;
using namespace __gnu_cxx;
template <class T> using Tree = tree<T, null_type, less<T>, rb_tree_tag, tree_order_statistics_node_update>;
#define ook order_of_key
#define fbo find_by_order
namespace input {
template<class T> void re(complex<T>& x);
template<class T1, class T2> void re(pair<T1,T2>& p);
template<class T> void re(vector<T>& a);
template<class T, size_t SZ> void re(array<T,SZ>& a);
template<class T> void re(T& x) { cin >> x; }
void re(double& x) { string t; re(t); x = stod(t); }
void re(ld& x) { string t; re(t); x = stold(t); }
template<class T, class... Ts> void re(T& t, Ts&... ts) {
re(t); re(ts...);
}
template<class T> void re(complex<T>& x) { T a,b; re(a,b); x = cd(a,b); }
template<class T1, class T2> void re(pair<T1,T2>& p) { re(p.f,p.s); }
template<class T> void re(vector<T>& a) { F0R(i,sz(a)) re(a[i]); }
template<class T, size_t SZ> void re(array<T,SZ>& a) { F0R(i,SZ) re(a[i]); }
}
using namespace input;
namespace output {
void pr(int x) { cout << x; }
void pr(long x) { cout << x; }
void pr(ll x) { cout << x; }
void pr(unsigned x) { cout << x; }
void pr(unsigned long x) { cout << x; }
void pr(unsigned long long x) { cout << x; }
void pr(float x) { cout << x; }
void pr(double x) { cout << x; }
void pr(ld x) { cout << x; }
void pr(char x) { cout << x; }
void pr(const char* x) { cout << x; }
void pr(const string& x) { cout << x; }
void pr(bool x) { pr(x ? "true" : "false"); }
template<class T> void pr(const complex<T>& x) { cout << x; }
template<class T1, class T2> void pr(const pair<T1,T2>& x);
template<class T> void pr(const T& x);
template<class T, class... Ts> void pr(const T& t, const Ts&... ts) {
pr(t); pr(ts...);
}
template<class T1, class T2> void pr(const pair<T1,T2>& x) {
pr("{",x.f,", ",x.s,"}");
}
template<class T> void pr(const T& x) {
pr("{"); // const iterator needed for vector<bool>
bool fst = 1; for (const auto& a: x) pr(!fst?", ":"",a), fst = 0;
pr("}");
}
void ps() { pr("\n"); } // print w/ spaces
template<class T, class... Ts> void ps(const T& t, const Ts&... ts) {
pr(t); if (sizeof...(ts)) pr(" "); ps(ts...);
}
void pc() { pr("]\n"); } // debug w/ commas
template<class T, class... Ts> void pc(const T& t, const Ts&... ts) {
pr(t); if (sizeof...(ts)) pr(", "); pc(ts...);
}
#define dbg(x...) pr("[",#x,"] = ["), pc(x);
}
using namespace output;
namespace io {
void setIn(string s) { freopen(s.c_str(),"r",stdin); }
void setOut(string s) { freopen(s.c_str(),"w",stdout); }
void setIO(string s = "") {
cin.sync_with_stdio(0); cin.tie(0); // fast I/O
cin.exceptions(cin.failbit); // ex. throws exception when you try to read letter into int
if (sz(s)) { setIn(s+".in"), setOut(s+".out"); } // for USACO
}
}
using namespace io;
template<class T> T invGeneral(T a, T b) {
a %= b; if (a == 0) return b == 1 ? 0 : -1;
T x = invGeneral(b,a);
return x == -1 ? -1 : ((1-(ll)b*x)/a+b)%b;
}
template<class T> struct modular {
T val;
explicit operator T() const { return val; }
modular() { val = 0; }
modular(const ll& v) {
val = (-MOD <= v && v <= MOD) ? v : v % MOD;
if (val < 0) val += MOD;
}
// friend ostream& operator<<(ostream& os, const modular& a) { return os << a.val; }
friend void pr(const modular& a) { pr(a.val); }
friend void re(modular& a) { ll x; re(x); a = modular(x); }
friend bool operator==(const modular& a, const modular& b) { return a.val == b.val; }
friend bool operator!=(const modular& a, const modular& b) { return !(a == b); }
friend bool operator<(const modular& a, const modular& b) { return a.val < b.val; }
modular operator-() const { return modular(-val); }
modular& operator+=(const modular& m) { if ((val += m.val) >= MOD) val -= MOD; return *this; }
modular& operator-=(const modular& m) { if ((val -= m.val) < 0) val += MOD; return *this; }
modular& operator*=(const modular& m) { val = (ll)val*m.val%MOD; return *this; }
friend modular pow(modular a, ll p) {
modular ans = 1; for (; p; p /= 2, a *= a) if (p&1) ans *= a;
return ans;
}
friend modular inv(const modular& a) {
auto i = invGeneral(a.val,MOD); assert(i != -1);
return i;
} // equivalent to return exp(b,MOD-2) if MOD is prime
modular& operator/=(const modular& m) { return (*this) *= inv(m); }
friend modular operator+(modular a, const modular& b) { return a += b; }
friend modular operator-(modular a, const modular& b) { return a -= b; }
friend modular operator*(modular a, const modular& b) { return a *= b; }
friend modular operator/(modular a, const modular& b) { return a /= b; }
};
typedef modular<int> mi;
typedef pair<mi,mi> pmi;
typedef vector<mi> vmi;
typedef vector<pmi> vpmi;
pi dp[2001][4001];
str A,B;
void init() {
FOR(i,1,sz(A)+1) FOR(j,1,sz(B)+1) { // naive LCS, store where value came from
pi& bes = dp[i][j]; bes = {-1,-1};
ckmax(bes,{dp[i-1][j].f,0});
ckmax(bes,{dp[i-1][j-1].f+(A[i-1] == B[j-1]),-1});
ckmax(bes,{dp[i][j-1].f,-2});
bes.s *= -1;
}
}
void adjust(int col) { // remove col'th character of b, adjust DP
int x = 1;
while (x <= sz(A) && dp[x][col].s == 0) x ++;
if (x > sz(A)) return; // no adjustments to dp
pi cur = {x,col}; dp[cur.f][cur.s].s = 0;
while (cur.f <= sz(A) && cur.s <= sz(B)) {
if (cur.s < sz(B) && dp[cur.f][cur.s+1].s == 2) {
cur.s ++;
dp[cur.f][cur.s].s = 0;
} else if (cur.f < sz(A) && cur.s < sz(B)
&& dp[cur.f+1][cur.s+1].s == 1) {
cur.f ++, cur.s ++;
dp[cur.f][cur.s].s = 0;
} else cur.f ++;
}
}
int getAns(pi x) {
int lo = x.s-sz(B)/2, ret = 0;
while (x.f && x.s > lo) {
if (dp[x.f][x.s].s == 0) x.f --;
else if (dp[x.f][x.s].s == 1) ret ++, x.f --, x.s --;
else x.s --;
}
return ret;
}
int circLCS(str a, str b) {
A = a, B = b+b; init();
int ans = 0;
F0R(i,sz(b)) {
ans = max(ans,getAns({sz(a),i+sz(b)}));
adjust(i+1);
}
return ans;
}
int main() {
ios_base::sync_with_stdio(0); cin.tie(0);
str a,b; cin >> a >> b;
int ans = circLCS(a,b);
reverse(all(a));
ckmax(ans,circLCS(a,b));
cout << ans;
}
/* stuff you should look for
* int overflow, array bounds
* special cases (n=1?), set tle
* do smth instead of nothing and stay organized
*/
Compilation message
rowords.cpp: In function 'void io::setIn(std::__cxx11::string)':
rowords.cpp:135:35: warning: ignoring return value of 'FILE* freopen(const char*, const char*, FILE*)', declared with attribute warn_unused_result [-Wunused-result]
void setIn(string s) { freopen(s.c_str(),"r",stdin); }
~~~~~~~^~~~~~~~~~~~~~~~~~~~~
rowords.cpp: In function 'void io::setOut(std::__cxx11::string)':
rowords.cpp:136:36: warning: ignoring return value of 'FILE* freopen(const char*, const char*, FILE*)', declared with attribute warn_unused_result [-Wunused-result]
void setOut(string s) { freopen(s.c_str(),"w",stdout); }
~~~~~~~^~~~~~~~~~~~~~~~~~~~~~
# |
Verdict |
Execution time |
Memory |
Grader output |
1 |
Correct |
2 ms |
376 KB |
Output is correct |
2 |
Correct |
2 ms |
376 KB |
Output is correct |
3 |
Correct |
2 ms |
376 KB |
Output is correct |
4 |
Correct |
2 ms |
504 KB |
Output is correct |
5 |
Correct |
2 ms |
504 KB |
Output is correct |
6 |
Correct |
9 ms |
6008 KB |
Output is correct |
7 |
Correct |
52 ms |
20088 KB |
Output is correct |
8 |
Correct |
96 ms |
20092 KB |
Output is correct |
9 |
Correct |
98 ms |
20024 KB |
Output is correct |
10 |
Correct |
84 ms |
19960 KB |
Output is correct |
11 |
Correct |
85 ms |
22008 KB |
Output is correct |
12 |
Correct |
65 ms |
25464 KB |
Output is correct |
13 |
Correct |
132 ms |
25208 KB |
Output is correct |
14 |
Correct |
100 ms |
23008 KB |
Output is correct |
15 |
Correct |
121 ms |
26744 KB |
Output is correct |
16 |
Correct |
118 ms |
22012 KB |
Output is correct |
17 |
Correct |
62 ms |
19064 KB |
Output is correct |
18 |
Correct |
113 ms |
26876 KB |
Output is correct |
19 |
Correct |
78 ms |
20088 KB |
Output is correct |
20 |
Correct |
123 ms |
24056 KB |
Output is correct |
21 |
Correct |
20 ms |
11256 KB |
Output is correct |
22 |
Correct |
35 ms |
14712 KB |
Output is correct |
23 |
Correct |
47 ms |
17528 KB |
Output is correct |
24 |
Correct |
49 ms |
18472 KB |
Output is correct |
25 |
Correct |
70 ms |
22524 KB |
Output is correct |