/**
* Method: treat pairs of altitudes as vertices in a graph, then run
* Dijkstra's algorithm.
*
* Author: Catalin Francu
*
* Implementation details: we insert vertices into the heap lazily when they
* are first reached. This reduces the heap size dramatically and speeds up
* the program by a factor of 2 or 3.
*
* In order to run decreaseKey() when reaching a vertex that's already in the
* heap, we store the heap index of each vertex in hp[].
**/
#include <stdio.h>
#include <stdlib.h>
#define MAX_N 5000
/* heap positions */
#define NEW 0 /* node not yet inserted */
#define REMOVED -1 /* node was processed and removed */
typedef unsigned long long u64;
typedef struct {
short x, y;
u64 dist;
} node;
int n;
int heapSize;
int alt[MAX_N + 1];
int hp[MAX_N][MAX_N];
node h[MAX_N * MAX_N + 1]; /* heap is 1-based */
/* returns true if the altitudes at i, j and k are in ascending or descending order */
int sequence(int i, int j, int k) {
return
(alt[i] <= alt[j] && alt[j] <= alt[k]) ||
(alt[i] >= alt[j] && alt[j] >= alt[k]);
}
void heapMove(int from, int to) {
hp[h[from].x][h[from].y] = to;
h[to] = h[from];
}
void heapSiftUp(int pos) {
node n = h[pos];
while ((pos > 1) && (n.dist < h[pos / 2].dist)) {
heapMove(pos / 2, pos);
pos /= 2;
}
hp[n.x][n.y] = pos;
h[pos] = n;
}
void heapSiftDown() {
int pos = 1;
node n = h[pos];
int done = 0;
while (!done) {
int child = pos;
if ((2 * pos <= heapSize) && (h[2 * pos].dist < h[child].dist)) {
child = 2 * pos;
}
if ((2 * pos + 1 <= heapSize) && (h[2 * pos + 1].dist < h[child].dist)) {
child = 2 * pos + 1;
}
if (child != pos) {
heapMove(child, pos);
h[child] = n;
pos = child;
} else {
done = 1;
}
}
hp[n.x][n.y] = pos;
}
void heapRemoveMin(int* x, int* y, u64* dist) {
*x = h[1].x;
*y = h[1].y;
*dist = h[1].dist;
heapMove(heapSize--, 1);
heapSiftDown();
hp[*x][*y] = REMOVED;
}
void decreaseKey(int x, int y, u64 dist) {
if (x < 0 || x >= n || y < 0 || y >= n) {
return; /* range checking */
}
int pos = hp[x][y];
switch (pos) {
case REMOVED:
/* nothing -- node was already processed */
break;
case NEW:
/* add the node to the heap */
hp[x][y] = ++heapSize;
h[heapSize] = (node) { x, y, dist };
heapSiftUp(heapSize);
break;
default:
if (dist < h[pos].dist) {
/* existing node and smaller distance */
h[pos].dist = dist;
heapSiftUp(pos);
}
}
}
u64 dijkstra() {
int x = 0, y = n - 1;
u64 d = 0;
while (x != y) {
/* loop invariant: alt[y], alt[x] and alt[y + 1] are sorted */
/* corner cases */
if (alt[x] == alt[y]) {
decreaseKey(x, y - 1, d);
decreaseKey(y, x, d);
decreaseKey(y, x - 1, d);
}
if (alt[x] == alt[y + 1]) {
decreaseKey(x, y, d);
decreaseKey(y + 1, x, d);
decreaseKey(y + 1, x - 1, d);
}
/* go towards x + 1 */
if (x + 1 < n) {
if (sequence(y, x + 1, y + 1)) {
decreaseKey(x + 1, y, d + abs(alt[x] - alt[x + 1]));
} else if (sequence(x + 1, y, x)) {
decreaseKey(y, x, d + abs(alt[x] - alt[y]));
} else {
decreaseKey(y + 1, x, d + abs(alt[x] - alt[y + 1]));
}
}
/* go towards x - 1 */
if (x > 0) {
if (sequence(y, x - 1, y + 1)) {
decreaseKey(x - 1, y, d + abs(alt[x] - alt[x - 1]));
} else if (sequence(x - 1, y, x)) {
decreaseKey(y, x - 1, d + abs(alt[x] - alt[y]));
} else {
decreaseKey(y + 1, x - 1, d + abs(alt[x] - alt[y + 1]));
}
}
heapRemoveMin(&x, &y, &d);
}
return d;
}
int main() {
int numAlts;
/* read altitudes, suppressing repeated values and monotonic runs */
scanf("%d%d%d", &numAlts, &alt[0], &alt[1]);
n = 2;
while (numAlts-- > 2) {
scanf("%d", &alt[n]);
if (sequence(n - 2, n - 1, n)) {
alt[n - 1] = alt[n];
} else {
n++;
}
}
u64 answer = dijkstra();
printf("%llu\n", answer);
}
Compilation message
climbers.c: In function 'main':
climbers.c:174:3: warning: ignoring return value of 'scanf', declared with attribute warn_unused_result [-Wunused-result]
scanf("%d%d%d", &numAlts, &alt[0], &alt[1]);
^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
climbers.c:177:5: warning: ignoring return value of 'scanf', declared with attribute warn_unused_result [-Wunused-result]
scanf("%d", &alt[n]);
^~~~~~~~~~~~~~~~~~~~
# |
Verdict |
Execution time |
Memory |
Grader output |
1 |
Correct |
2 ms |
632 KB |
Output is correct |
2 |
Correct |
3 ms |
1656 KB |
Output is correct |
3 |
Correct |
9 ms |
5240 KB |
Output is correct |
4 |
Correct |
33 ms |
21880 KB |
Output is correct |
5 |
Correct |
95 ms |
59256 KB |
Output is correct |
# |
Verdict |
Execution time |
Memory |
Grader output |
1 |
Correct |
2 ms |
504 KB |
Output is correct |
2 |
Correct |
2 ms |
504 KB |
Output is correct |
3 |
Correct |
3 ms |
864 KB |
Output is correct |
4 |
Correct |
2 ms |
760 KB |
Output is correct |
5 |
Correct |
4 ms |
2040 KB |
Output is correct |
# |
Verdict |
Execution time |
Memory |
Grader output |
1 |
Correct |
2 ms |
632 KB |
Output is correct |
2 |
Correct |
4 ms |
1528 KB |
Output is correct |
3 |
Correct |
86 ms |
5980 KB |
Output is correct |
4 |
Correct |
142 ms |
18296 KB |
Output is correct |
5 |
Correct |
193 ms |
20600 KB |
Output is correct |
6 |
Correct |
205 ms |
30160 KB |
Output is correct |
7 |
Correct |
203 ms |
25080 KB |
Output is correct |
8 |
Correct |
192 ms |
51704 KB |
Output is correct |
9 |
Correct |
225 ms |
42168 KB |
Output is correct |
10 |
Correct |
229 ms |
41848 KB |
Output is correct |