Submission #154554

# Submission time Handle Problem Language Result Execution time Memory
154554 2019-09-22T17:18:41 Z liwi Rectangles (IOI19_rect) C++14
72 / 100
5000 ms 1048576 KB
#pragma GCC optimize("Ofast")
#pragma GCC optimize("unroll-loops")
#pragma GCC target("sse4,popcnt,abm,mmx,tune=native")

#include <bits/stdc++.h>
#include <ext/pb_ds/assoc_container.hpp>
#include <ext/pb_ds/tree_policy.hpp>

using namespace std;
using namespace __gnu_pbds;
typedef tree<int, null_type, less<int>, rb_tree_tag,tree_order_statistics_node_update> ordered_set;

#define scan(x) do{while((x=getchar())<'0'); for(x-='0'; '0'<=(_=getchar()); x=(x<<3)+(x<<1)+_-'0');}while(0)
char _;
#define complete_unique(a) a.erase(unique(a.begin(),a.end()),a.end())
#define all(a) a.begin(),a.end()
#define println printf("\n");
#define readln(x) getline(cin,x);
#define pb push_back
#define endl "\n"
#define INT_INF 0x3f3f3f3f
#define LL_INF 0x3f3f3f3f3f3f3f3f
#define MOD 1000000007
#define MOD2 1494318097
#define SEED 131
#define mp make_pair
#define fastio cin.tie(0); cin.sync_with_stdio(0);

#define MAXN 2501

typedef unsigned long long ull;
typedef long long ll;
typedef long double ld;
typedef unordered_map<int,int> umii;
typedef pair<int,int> pii;
typedef pair<double,double> pdd;
typedef pair<ll,ll> pll;
typedef pair<int,pii> triple;
typedef int8_t byte;

mt19937 g1(time(0));

int randint(int a, int b){return uniform_int_distribution<int>(a, b)(g1);}
ll randlong(ll a,ll b){return uniform_int_distribution<long long>(a, b)(g1);}

ll gcd(ll a, ll b){return b == 0 ? a : gcd(b, a % b);}
ll lcm(ll a, ll b){return a*b/gcd(a,b);}
ll fpow(ll  b, ll exp, ll mod){if(exp == 0) return 1;ll t = fpow(b,exp/2,mod);if(exp&1) return t*t%mod*b%mod;return t*t%mod;}
ll divmod(ll i, ll j, ll mod){i%=mod,j%=mod;return i*fpow(j,mod-2,mod)%mod;}

int num_rows,num_cols,arr[MAXN][MAXN],bit[MAXN],cnt[MAXN][MAXN],ans,l,r,lst[MAXN][MAXN];
vector<pii> row_dp[MAXN][MAXN],col_dp[MAXN][MAXN];
pii dq[MAXN];
//vector<pii> rows[MAXN],cols[MAXN];
//vector<int> h_segs[MAXN][MAXN],v_segs[MAXN][MAXN];
//vector<int> r_range[MAXN][MAXN],v_range[MAXN][MAXN];

inline void update(int pos, int val){
	for(int i=pos; i<=num_cols; i+=i&-i)
		bit[i]+=val;
}

inline int query(int pos){
	int res = 0;
	for(int i=pos; i>0; i-=i&-i)
		res+=bit[i];
	return res;
}

inline void init_rows(){
//	memset(cnt,0,sizeof cnt);
	for(int i=2; i<num_rows; i++){
		l = 1, r = 0;
		for(int k=1; k<=num_cols; k++){
			while(r-l+1 > 0 && dq[r].first < arr[i][k]) r--;
			int lft = (r-l+1>0?dq[r].second:INT_INF);
			if(lft < k-1 && (row_dp[lft+1][k-1].empty() || row_dp[lft+1][k-1].back().first != i))
				row_dp[lft+1][k-1].emplace_back(i,i), cnt[lft+1][k-1]++; //rows[i].pb(mp(lft+1,k-1));
			while(r-l+1 > 0 && dq[r].first == arr[i][k]) r--;
			dq[++r] = mp(arr[i][k],k);
		}
		l = 1, r = 0;
		for(int k=num_cols; k>=1; k--){
			while(r-l+1 > 0 && dq[r].first < arr[i][k]) r--;
			int rgt = (r-l+1>0?dq[r].second:-INT_INF);
			if(rgt > k+1 && (row_dp[k+1][rgt-1].empty() || row_dp[k+1][rgt-1].back().first != i))
				row_dp[k+1][rgt-1].emplace_back(i,i), cnt[k+1][rgt-1]++; //rows[i].pb(mp(k+1,rgt-1));
			while(r-l+1 > 0 && dq[r].first == arr[i][k]) r--;
			dq[++r] = mp(arr[i][k],k);
		}
	}
}

inline void init_cols(){
	memset(cnt,0,sizeof cnt);
	for(int i=2; i<num_cols; i++){
		l = 1, r = 0;
		for(int k=1; k<=num_rows; k++){
			while(r-l+1 > 0 && dq[r].first < arr[k][i]) r--;
			int lft = (r-l+1>0?dq[r].second:INT_INF);
			if(lft < k-1 && (col_dp[lft+1][k-1].empty() || col_dp[lft+1][k-1].back().first != i))
				col_dp[lft+1][k-1].emplace_back(i,i), cnt[lft+1][k-1]++; //cols[i].pb(mp(lft+1,k-1));
			while(r-l+1 > 0 && dq[r].first == arr[k][i]) r--;
			dq[++r] = mp(arr[k][i],k);
		}
		l = 1, r = 0;
		for(int k=num_rows; k>=1; k--){
			while(r-l+1 > 0 && dq[r].first < arr[k][i]) r--;
			int rgt = (r-l+1>0?dq[r].second:-INT_INF);
			if(rgt > k+1 && (col_dp[k+1][rgt-1].empty() || col_dp[k+1][rgt-1].back().first != i))
				col_dp[k+1][rgt-1].emplace_back(i,i), cnt[k+1][rgt-1]++; //cols[i].pb(mp(k+1,rgt-1));
			while(r-l+1 > 0 && dq[r].first == arr[k][i]) r--;
			dq[++r] = mp(arr[k][i],k);
		}
	}
}

inline void calc_hor_dp(){
//	for(int i=2; i<num_rows; i++){
//		sort(all(rows[i])); complete_unique(rows[i]);
//		for(pii check:rows[i]){
//			h_segs[check.first][check.second].pb(i);
////			r_range[i][check.first].pb(check.second);
//		}
//		rows[i].clear();
//	}
	vector<pair<pii,int>> dep[MAXN];
	for(int l=2; l<=num_cols-1; l++){
		for(int r=l; r<=num_cols-1; r++){
			if(cnt[l][r] == 0) continue;
			vector<pii> &nums = row_dp[l][r];
//			sort(all(nums)); complete_unique(nums);
//			vector<pii> t;
			int lst = 0;
			for(int i=1; i<cnt[l][r]; i++){
				if(nums[i].first == nums[i-1].first+1) continue;
				for(int k=nums[lst].first; k<=nums[i-1].first; k++)
					dep[nums[i-1].first-k+1].emplace_back(mp(k,l),r);
//					row_dp[k][l].pb(mp(nums[i-1].first-k+1,r));
				lst = i;
			}
			for(int k=nums[lst].first; k<=nums[cnt[l][r]-1].first; k++)
				dep[nums[cnt[l][r]-1].first-k+1].emplace_back(mp(k,l),r);
//				row_dp[k][l].pb(mp(nums[cnt[l][r]-1].first-k+1,r));
			nums.clear();
		}
	}
	for(int i=1; i<=num_rows; i++){
		for(auto &check:dep[i])
			row_dp[check.first.first][check.first.second].emplace_back(i,check.second);
	}
//	for(int l=2; l<=num_cols-1; l++){
//		for(int r=l; r<=num_cols-1; r++){
//			reverse(all(row_dp[l][r]));
//			while(cnt[l][r]--) row_dp[l][r].pop_back();
//			reverse(all(row_dp[l][r]));
//		}
//	}
}

inline void calc_col_dp(){
//	for(int i=2; i<num_cols; i++){
//		sort(all(cols[i])); complete_unique(cols[i]);
//		for(pii check:cols[i]){
//			v_segs[check.first][check.second].pb(i);
////			v_range[check.first][i].pb(check.second);
//		}
//		cols[i].clear();
//	}
	for(int l=2; l<=num_rows-1; l++){
		for(int r=l; r<=num_rows-1; r++){
			if(cnt[l][r] == 0) continue;
			vector<pii> &nums = col_dp[l][r];
//			sort(all(nums)); complete_unique(nums);
			int lst = 0;
			for(int i=1; i<cnt[l][r]; i++){
				if(nums[i].first == nums[i-1].first+1) continue;
				for(int k=nums[lst].first; k<=nums[i-1].first; k++)
					col_dp[l][k].emplace_back(r,nums[i-1].first);
				lst = i;
			}
			for(int k=nums[lst].first; k<=nums[cnt[l][r]-1].first; k++)
				col_dp[l][k].emplace_back(r,nums[cnt[l][r]-1].first);
		}
	}
//	for(int l=2; l<=num_cols-1; l++){
//		for(int r=l; r<=num_cols-1; r++){
//			reverse(all(col_dp[l][r]));
//			while(cnt[l][r]--) col_dp[l][r].pop_back();
//			reverse(all(col_dp[l][r]));
//		}
//	}
}

ll count_rectangles(vector<vector<int>> a){
	ans = 0, num_rows = (int)a.size(), num_cols = (int)a[0].size();
	for(int i=0; i<a.size(); i++)
		for(int k=0; k<a[i].size(); k++)
			arr[i+1][k+1] = a[i][k];


	for(int i=2; i<num_rows; i++){
		l = 1, r = 0;
		for(int k=1; k<=num_cols; k++){
			while(r-l+1 > 0 && dq[r].first < arr[i][k]) r--;
			int lft = (r-l+1>0?dq[r].second:INT_INF);
			if(lft < k-1 && (row_dp[lft+1][k-1].empty() || row_dp[lft+1][k-1].back().first != i))
				row_dp[lft+1][k-1].emplace_back(i,i), cnt[lft+1][k-1]++; //rows[i].pb(mp(lft+1,k-1));
			while(r-l+1 > 0 && dq[r].first == arr[i][k]) r--;
			dq[++r] = mp(arr[i][k],k);
		}
		l = 1, r = 0;
		for(int k=num_cols; k>=1; k--){
			while(r-l+1 > 0 && dq[r].first < arr[i][k]) r--;
			int rgt = (r-l+1>0?dq[r].second:-INT_INF);
			if(rgt > k+1 && (row_dp[k+1][rgt-1].empty() || row_dp[k+1][rgt-1].back().first != i))
				row_dp[k+1][rgt-1].emplace_back(i,i), cnt[k+1][rgt-1]++; //rows[i].pb(mp(k+1,rgt-1));
			while(r-l+1 > 0 && dq[r].first == arr[i][k]) r--;
			dq[++r] = mp(arr[i][k],k);
		}
	}


	vector<pair<pii,int>> dep[MAXN];
	for(int l=2; l<=num_cols-1; l++){
		for(int r=l; r<=num_cols-1; r++){
			if(cnt[l][r] == 0) continue;
			vector<pii> &nums = row_dp[l][r];
//			sort(all(nums)); complete_unique(nums);
//			vector<pii> t;
			int lst = 0;
			for(int i=1; i<cnt[l][r]; i++){
				if(nums[i].first == nums[i-1].first+1) continue;
				for(int k=nums[lst].first; k<=nums[i-1].first; k++)
					dep[nums[i-1].first-k+1].emplace_back(mp(k,l),r);
//					row_dp[k][l].pb(mp(nums[i-1].first-k+1,r));
				lst = i;
			}
			for(int k=nums[lst].first; k<=nums[cnt[l][r]-1].first; k++)
				dep[nums[cnt[l][r]-1].first-k+1].emplace_back(mp(k,l),r);
//				row_dp[k][l].pb(mp(nums[cnt[l][r]-1].first-k+1,r));
			nums.clear();
		}
	}
	for(int i=1; i<=num_rows; i++){
		for(auto &check:dep[i])
			row_dp[check.first.first][check.first.second].emplace_back(i,check.second);
	}




	memset(cnt,0,sizeof cnt);
	for(int i=2; i<num_cols; i++){
		l = 1, r = 0;
		for(int k=1; k<=num_rows; k++){
			while(r-l+1 > 0 && dq[r].first < arr[k][i]) r--;
			int lft = (r-l+1>0?dq[r].second:INT_INF);
			if(lft < k-1 && (col_dp[lft+1][k-1].empty() || col_dp[lft+1][k-1].back().first != i))
				col_dp[lft+1][k-1].emplace_back(i,i), cnt[lft+1][k-1]++; //cols[i].pb(mp(lft+1,k-1));
			while(r-l+1 > 0 && dq[r].first == arr[k][i]) r--;
			dq[++r] = mp(arr[k][i],k);
		}
		l = 1, r = 0;
		for(int k=num_rows; k>=1; k--){
			while(r-l+1 > 0 && dq[r].first < arr[k][i]) r--;
			int rgt = (r-l+1>0?dq[r].second:-INT_INF);
			if(rgt > k+1 && (col_dp[k+1][rgt-1].empty() || col_dp[k+1][rgt-1].back().first != i))
				col_dp[k+1][rgt-1].emplace_back(i,i), cnt[k+1][rgt-1]++; //cols[i].pb(mp(k+1,rgt-1));
			while(r-l+1 > 0 && dq[r].first == arr[k][i]) r--;
			dq[++r] = mp(arr[k][i],k);
		}
	}


	for(int l=2; l<=num_rows-1; l++){
		for(int r=l; r<=num_rows-1; r++){
			if(cnt[l][r] == 0) continue;
			vector<pii> &nums = col_dp[l][r];
//			sort(all(nums)); complete_unique(nums);
			int lst = 0;
			for(int i=1; i<cnt[l][r]; i++){
				if(nums[i].first == nums[i-1].first+1) continue;
				for(int k=nums[lst].first; k<=nums[i-1].first; k++)
					col_dp[l][k].emplace_back(r,nums[i-1].first);
				lst = i;
			}
			for(int k=nums[lst].first; k<=nums[cnt[l][r]-1].first; k++)
				col_dp[l][k].emplace_back(r,nums[cnt[l][r]-1].first);
		}
	}


//	init_rows(); calc_hor_dp();
//	init_cols(); calc_col_dp();
	for(int i=num_rows-1; i>=2; i--){
		for(int k=num_cols-1; k>=2; k--){
//			sort(all(row_dp[i][k]));
//			sort(all(col_dp[i][k]));
			int ptr = cnt[i][k], res = 0, cc = 0;
			for(int v=0; v<row_dp[i][k].size(); v++){
//				pii curr = row_dp[i][k][v];
				while(ptr < col_dp[i][k].size() && col_dp[i][k][ptr].first-i+1 <= row_dp[i][k][v].first){
//					assert(col_dp[i][k][ptr].second>=k);
					update(col_dp[i][k][ptr].second-k+1,1);
					ptr++, cc++;
				}
				res+=cc-query(row_dp[i][k][v].second-k);
			}
			while(--ptr >= cnt[i][k]) update(col_dp[i][k][ptr].second-k+1,-1);
			ans+=res;
		}
	}
	return ans;
}

Compilation message

rect.cpp: In function 'll count_rectangles(std::vector<std::vector<int> >)':
rect.cpp:197:16: warning: comparison between signed and unsigned integer expressions [-Wsign-compare]
  for(int i=0; i<a.size(); i++)
               ~^~~~~~~~~
rect.cpp:198:17: warning: comparison between signed and unsigned integer expressions [-Wsign-compare]
   for(int k=0; k<a[i].size(); k++)
                ~^~~~~~~~~~~~
rect.cpp:301:18: warning: comparison between signed and unsigned integer expressions [-Wsign-compare]
    for(int v=0; v<row_dp[i][k].size(); v++){
                 ~^~~~~~~~~~~~~~~~~~~~
rect.cpp:303:15: warning: comparison between signed and unsigned integer expressions [-Wsign-compare]
     while(ptr < col_dp[i][k].size() && col_dp[i][k][ptr].first-i+1 <= row_dp[i][k][v].first){
           ~~~~^~~~~~~~~~~~~~~~~~~~~
# Verdict Execution time Memory Grader output
1 Correct 313 ms 318760 KB Output is correct
2 Correct 317 ms 318860 KB Output is correct
3 Correct 324 ms 318840 KB Output is correct
4 Correct 327 ms 318832 KB Output is correct
5 Correct 316 ms 318808 KB Output is correct
6 Correct 314 ms 318968 KB Output is correct
7 Correct 323 ms 318864 KB Output is correct
8 Correct 335 ms 318840 KB Output is correct
9 Correct 358 ms 318968 KB Output is correct
10 Correct 321 ms 318840 KB Output is correct
11 Correct 315 ms 318800 KB Output is correct
12 Correct 313 ms 318956 KB Output is correct
13 Correct 315 ms 318632 KB Output is correct
14 Correct 312 ms 318712 KB Output is correct
15 Correct 315 ms 318712 KB Output is correct
16 Correct 312 ms 318644 KB Output is correct
17 Correct 314 ms 318712 KB Output is correct
18 Correct 314 ms 318584 KB Output is correct
19 Correct 316 ms 318916 KB Output is correct
20 Correct 315 ms 318852 KB Output is correct
21 Correct 316 ms 318712 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 313 ms 318760 KB Output is correct
2 Correct 317 ms 318860 KB Output is correct
3 Correct 324 ms 318840 KB Output is correct
4 Correct 327 ms 318832 KB Output is correct
5 Correct 316 ms 318808 KB Output is correct
6 Correct 314 ms 318968 KB Output is correct
7 Correct 323 ms 318864 KB Output is correct
8 Correct 335 ms 318840 KB Output is correct
9 Correct 358 ms 318968 KB Output is correct
10 Correct 321 ms 318840 KB Output is correct
11 Correct 315 ms 318800 KB Output is correct
12 Correct 313 ms 318956 KB Output is correct
13 Correct 315 ms 318632 KB Output is correct
14 Correct 312 ms 318712 KB Output is correct
15 Correct 315 ms 318712 KB Output is correct
16 Correct 312 ms 318644 KB Output is correct
17 Correct 318 ms 319804 KB Output is correct
18 Correct 321 ms 319736 KB Output is correct
19 Correct 315 ms 319864 KB Output is correct
20 Correct 314 ms 319224 KB Output is correct
21 Correct 315 ms 319600 KB Output is correct
22 Correct 314 ms 319572 KB Output is correct
23 Correct 314 ms 319480 KB Output is correct
24 Correct 313 ms 319224 KB Output is correct
25 Correct 314 ms 318712 KB Output is correct
26 Correct 314 ms 318584 KB Output is correct
27 Correct 316 ms 318916 KB Output is correct
28 Correct 315 ms 318852 KB Output is correct
29 Correct 316 ms 318712 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 313 ms 318760 KB Output is correct
2 Correct 317 ms 318860 KB Output is correct
3 Correct 324 ms 318840 KB Output is correct
4 Correct 327 ms 318832 KB Output is correct
5 Correct 316 ms 318808 KB Output is correct
6 Correct 314 ms 318968 KB Output is correct
7 Correct 323 ms 318864 KB Output is correct
8 Correct 335 ms 318840 KB Output is correct
9 Correct 358 ms 318968 KB Output is correct
10 Correct 321 ms 318840 KB Output is correct
11 Correct 315 ms 318800 KB Output is correct
12 Correct 313 ms 318956 KB Output is correct
13 Correct 315 ms 318632 KB Output is correct
14 Correct 312 ms 318712 KB Output is correct
15 Correct 315 ms 318712 KB Output is correct
16 Correct 312 ms 318644 KB Output is correct
17 Correct 318 ms 319804 KB Output is correct
18 Correct 321 ms 319736 KB Output is correct
19 Correct 315 ms 319864 KB Output is correct
20 Correct 314 ms 319224 KB Output is correct
21 Correct 315 ms 319600 KB Output is correct
22 Correct 314 ms 319572 KB Output is correct
23 Correct 314 ms 319480 KB Output is correct
24 Correct 313 ms 319224 KB Output is correct
25 Correct 330 ms 324012 KB Output is correct
26 Correct 330 ms 324088 KB Output is correct
27 Correct 353 ms 324116 KB Output is correct
28 Correct 325 ms 321460 KB Output is correct
29 Correct 349 ms 322976 KB Output is correct
30 Correct 334 ms 323104 KB Output is correct
31 Correct 334 ms 322864 KB Output is correct
32 Correct 348 ms 322976 KB Output is correct
33 Correct 314 ms 318712 KB Output is correct
34 Correct 314 ms 318584 KB Output is correct
35 Correct 316 ms 318916 KB Output is correct
36 Correct 315 ms 318852 KB Output is correct
37 Correct 316 ms 318712 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 313 ms 318760 KB Output is correct
2 Correct 317 ms 318860 KB Output is correct
3 Correct 324 ms 318840 KB Output is correct
4 Correct 327 ms 318832 KB Output is correct
5 Correct 316 ms 318808 KB Output is correct
6 Correct 314 ms 318968 KB Output is correct
7 Correct 323 ms 318864 KB Output is correct
8 Correct 335 ms 318840 KB Output is correct
9 Correct 358 ms 318968 KB Output is correct
10 Correct 321 ms 318840 KB Output is correct
11 Correct 315 ms 318800 KB Output is correct
12 Correct 313 ms 318956 KB Output is correct
13 Correct 315 ms 318632 KB Output is correct
14 Correct 312 ms 318712 KB Output is correct
15 Correct 315 ms 318712 KB Output is correct
16 Correct 312 ms 318644 KB Output is correct
17 Correct 318 ms 319804 KB Output is correct
18 Correct 321 ms 319736 KB Output is correct
19 Correct 315 ms 319864 KB Output is correct
20 Correct 314 ms 319224 KB Output is correct
21 Correct 315 ms 319600 KB Output is correct
22 Correct 314 ms 319572 KB Output is correct
23 Correct 314 ms 319480 KB Output is correct
24 Correct 313 ms 319224 KB Output is correct
25 Correct 330 ms 324012 KB Output is correct
26 Correct 330 ms 324088 KB Output is correct
27 Correct 353 ms 324116 KB Output is correct
28 Correct 325 ms 321460 KB Output is correct
29 Correct 349 ms 322976 KB Output is correct
30 Correct 334 ms 323104 KB Output is correct
31 Correct 334 ms 322864 KB Output is correct
32 Correct 348 ms 322976 KB Output is correct
33 Correct 505 ms 356432 KB Output is correct
34 Correct 466 ms 355172 KB Output is correct
35 Correct 462 ms 355304 KB Output is correct
36 Correct 407 ms 354276 KB Output is correct
37 Correct 527 ms 380776 KB Output is correct
38 Correct 537 ms 380636 KB Output is correct
39 Correct 610 ms 381048 KB Output is correct
40 Correct 515 ms 377412 KB Output is correct
41 Correct 441 ms 340072 KB Output is correct
42 Correct 487 ms 345000 KB Output is correct
43 Correct 661 ms 362476 KB Output is correct
44 Correct 712 ms 364772 KB Output is correct
45 Correct 486 ms 343444 KB Output is correct
46 Correct 474 ms 341856 KB Output is correct
47 Correct 666 ms 361500 KB Output is correct
48 Correct 635 ms 362648 KB Output is correct
49 Correct 314 ms 318712 KB Output is correct
50 Correct 314 ms 318584 KB Output is correct
51 Correct 316 ms 318916 KB Output is correct
52 Correct 315 ms 318852 KB Output is correct
53 Correct 316 ms 318712 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 360 ms 319112 KB Output is correct
2 Correct 321 ms 319096 KB Output is correct
3 Correct 330 ms 318840 KB Output is correct
4 Correct 322 ms 318840 KB Output is correct
5 Correct 328 ms 318968 KB Output is correct
6 Correct 323 ms 319012 KB Output is correct
7 Correct 337 ms 318976 KB Output is correct
8 Correct 329 ms 319060 KB Output is correct
9 Correct 327 ms 319136 KB Output is correct
10 Correct 326 ms 318716 KB Output is correct
11 Correct 327 ms 318800 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 313 ms 318840 KB Output is correct
2 Correct 1156 ms 430816 KB Output is correct
3 Correct 2282 ms 559380 KB Output is correct
4 Correct 2292 ms 560380 KB Output is correct
5 Correct 2316 ms 560432 KB Output is correct
6 Correct 463 ms 361200 KB Output is correct
7 Correct 657 ms 400768 KB Output is correct
8 Correct 657 ms 404376 KB Output is correct
9 Correct 314 ms 318712 KB Output is correct
10 Correct 314 ms 318584 KB Output is correct
11 Correct 316 ms 318916 KB Output is correct
12 Correct 315 ms 318852 KB Output is correct
13 Correct 316 ms 318712 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 313 ms 318760 KB Output is correct
2 Correct 317 ms 318860 KB Output is correct
3 Correct 324 ms 318840 KB Output is correct
4 Correct 327 ms 318832 KB Output is correct
5 Correct 316 ms 318808 KB Output is correct
6 Correct 314 ms 318968 KB Output is correct
7 Correct 323 ms 318864 KB Output is correct
8 Correct 335 ms 318840 KB Output is correct
9 Correct 358 ms 318968 KB Output is correct
10 Correct 321 ms 318840 KB Output is correct
11 Correct 315 ms 318800 KB Output is correct
12 Correct 313 ms 318956 KB Output is correct
13 Correct 315 ms 318632 KB Output is correct
14 Correct 312 ms 318712 KB Output is correct
15 Correct 315 ms 318712 KB Output is correct
16 Correct 312 ms 318644 KB Output is correct
17 Correct 318 ms 319804 KB Output is correct
18 Correct 321 ms 319736 KB Output is correct
19 Correct 315 ms 319864 KB Output is correct
20 Correct 314 ms 319224 KB Output is correct
21 Correct 315 ms 319600 KB Output is correct
22 Correct 314 ms 319572 KB Output is correct
23 Correct 314 ms 319480 KB Output is correct
24 Correct 313 ms 319224 KB Output is correct
25 Correct 330 ms 324012 KB Output is correct
26 Correct 330 ms 324088 KB Output is correct
27 Correct 353 ms 324116 KB Output is correct
28 Correct 325 ms 321460 KB Output is correct
29 Correct 349 ms 322976 KB Output is correct
30 Correct 334 ms 323104 KB Output is correct
31 Correct 334 ms 322864 KB Output is correct
32 Correct 348 ms 322976 KB Output is correct
33 Correct 505 ms 356432 KB Output is correct
34 Correct 466 ms 355172 KB Output is correct
35 Correct 462 ms 355304 KB Output is correct
36 Correct 407 ms 354276 KB Output is correct
37 Correct 527 ms 380776 KB Output is correct
38 Correct 537 ms 380636 KB Output is correct
39 Correct 610 ms 381048 KB Output is correct
40 Correct 515 ms 377412 KB Output is correct
41 Correct 441 ms 340072 KB Output is correct
42 Correct 487 ms 345000 KB Output is correct
43 Correct 661 ms 362476 KB Output is correct
44 Correct 712 ms 364772 KB Output is correct
45 Correct 486 ms 343444 KB Output is correct
46 Correct 474 ms 341856 KB Output is correct
47 Correct 666 ms 361500 KB Output is correct
48 Correct 635 ms 362648 KB Output is correct
49 Correct 360 ms 319112 KB Output is correct
50 Correct 321 ms 319096 KB Output is correct
51 Correct 330 ms 318840 KB Output is correct
52 Correct 322 ms 318840 KB Output is correct
53 Correct 328 ms 318968 KB Output is correct
54 Correct 323 ms 319012 KB Output is correct
55 Correct 337 ms 318976 KB Output is correct
56 Correct 329 ms 319060 KB Output is correct
57 Correct 327 ms 319136 KB Output is correct
58 Correct 326 ms 318716 KB Output is correct
59 Correct 327 ms 318800 KB Output is correct
60 Correct 313 ms 318840 KB Output is correct
61 Correct 1156 ms 430816 KB Output is correct
62 Correct 2282 ms 559380 KB Output is correct
63 Correct 2292 ms 560380 KB Output is correct
64 Correct 2316 ms 560432 KB Output is correct
65 Correct 463 ms 361200 KB Output is correct
66 Correct 657 ms 400768 KB Output is correct
67 Correct 657 ms 404376 KB Output is correct
68 Correct 3339 ms 768752 KB Output is correct
69 Correct 2704 ms 750660 KB Output is correct
70 Correct 2565 ms 750700 KB Output is correct
71 Correct 1559 ms 732448 KB Output is correct
72 Correct 3658 ms 1048576 KB Output is correct
73 Correct 3355 ms 638084 KB Output is correct
74 Correct 3704 ms 680308 KB Output is correct
75 Execution timed out 5048 ms 847088 KB Time limit exceeded
76 Halted 0 ms 0 KB -