Submission #154347

# Submission time Handle Problem Language Result Execution time Memory
154347 2019-09-21T02:40:52 Z thecodingwizard Tenis (COI19_tenis) C++11
100 / 100
195 ms 7672 KB
//#pragma GCC optimize ("O3")
//#pragma GCC target ("sse4")

#include <bits/stdc++.h>

#include <utility>

using namespace std;

template<class T> using min_heap = priority_queue<T, vector<T>, greater<T>>;

#define FOR(i, a, b) for (int i=a; i<(b); i++)
#define F0R(i, a) for (int i=0; i<(a); i++)
#define F0R1(i, a) for (int i=1; i<=(a); i++)
#define FORd(i, a, b) for (int i = (b)-1; i >= a; i--)
#define F0Rd(i, a) for (int i = (a)-1; i >= 0; i--)
#define trav(a, x) for (auto& a : x)
#define MIN(a, b) a = min(a, b)
#define MAX(a, b) a = max(a, b)

#define INF 1000000010
#define LL_INF 4500000000000000000LL
#define LSOne(S) (S & (-S))
#define EPS 1e-9
#define pA first
#define pB second
#define mp make_pair
#define mt make_tuple
#define pb push_back
#define PI acos(-1.0)
// #define MOD (int)(2e+9+11)
#define MOD (int)(1e+9+7)
#define SET(vec, val, size) for (int i = 0; i < size; i++) vec[i] = val;
#define SET2D(arr, val, dim1, dim2) F0R(i, dim1) F0R(j, dim2) arr[i][j] = val;
#define SET3D(arr, val, dim1, dim2, dim3) F0R(i, dim1) F0R(j, dim2) F0R(k, dim3) arr[i][j][k] = val;
#define SET4D(arr, val, dim1, dim2, dim3, dim4) F0R(i, dim1) F0R(j, dim2) F0R(k, dim3) F0R(l, dim4) arr[i][j][k][l] = val;

#define lb lower_bound
#define ub upper_bound
#define sz(x) (int)x.size()
#define beg(x) x.begin()
#define en(x) x.end()
#define all(x) beg(x), en(x)
#define resz resize
#define SORT(vec) sort(all(vec))
#define RSORT(vec) sort(vec.rbegin(),vec.rend())

typedef long long ll;
typedef long double ld;
typedef unsigned long long ull;
typedef pair<int, int> ii;
typedef pair<int, ii> iii;
typedef pair<ll, ll> pll;
typedef vector<int> vi;
typedef vector<ii> vii;
typedef vector<iii> viii;
typedef vector<ll> vl;

// @formatter:off
// Source: Benq (https://github.com/bqi343/USACO) [Modified]
namespace input {
    template<class T> void re(complex<T>& x);
    template<class T1, class T2> void re(pair<T1,T2>& p);
    template<class T> void re(vector<T>& a);
    template<class T, size_t SZ> void re(array<T,SZ>& a);
    template<class T> void reA(T A[], int sz);

    template<class T> void re(T& x) { cin >> x; }
    void re(double& x) { string t; re(t); x = stod(t); }
    void re(ld& x) { string t; re(t); x = stold(t); }
    template<class Arg, class... Args> void re(Arg& first, Args&... rest) {
        re(first); re(rest...);
    }

    template<class T1, class T2> void re(pair<T1,T2>& p) { re(p.pA,p.pB); }
    template<class T> void re(vector<T>& a) { F0R(i,sz(a)) re(a[i]); }
    template<class T, size_t SZ> void re(array<T,SZ>& a) { F0R(i,SZ) re(a[i]); }
    template<class T> void reA(T A[], int sz) { F0R(i, sz) re(A[i]); }

    void setupIO(const string &PROB = "") {
        ios::sync_with_stdio(false);
        cin.tie(nullptr);
        if (PROB.length() != 0) {
            ifstream infile(PROB + ".in");
            if (infile.good()) {
                freopen((PROB + ".in").c_str(), "r", stdin);
                freopen((PROB + ".out").c_str(), "w", stdout);
            }
        }
    }
}
using namespace input;

namespace output {
    template<class T1, class T2> void prD(const pair<T1,T2>& x);
    template<class T, size_t SZ> void prD(const array<T,SZ>& x);
    template<class T> void prD(const vector<T>& x);
    template<class T> void prD(const set<T>& x);
    template<class T1, class T2> void prD(const map<T1,T2>& x);

    template<class T1, class T2> void pr(const pair<T1,T2>& x);
    template<class T, size_t SZ> void pr(const array<T,SZ>& x);
    template<class T> void pr(const vector<T>& x);
    template<class T> void pr(const set<T>& x);
    template<class T1, class T2> void pr(const map<T1,T2>& x);

    template<class T> void prD(const T& x) { cout << x; }
    template<class Arg, class... Args> void prD(const Arg& first, const Args&... rest) {
        prD(first); prD(rest...);
    }

    template<class T1, class T2> void prD(const pair<T1,T2>& x) {
        prD("{",x.pA,", ",x.pB,"}");
    }
    template<class T> void prDContain(const T& x) {
        prD("{");
        bool fst = 1; for (const auto& a: x) prD(!fst?", ":"",a), fst = 0; // const needed for vector<bool>
        prD("}");
    }
    template<class T, size_t SZ> void prD(const array<T,SZ>& x) { prDContain(x); }
    template<class T> void prD(const vector<T>& x) { prDContain(x); }
    template<class T> void prD(const set<T>& x) { prDContain(x); }
    template<class T1, class T2> void prD(const map<T1,T2>& x) { prDContain(x); }

    void psD() { prD("\n"); }
    template<class Arg> void psD(const Arg& first) {
        prD(first); psD(); // no space at end of line
    }
    template<class Arg, class... Args> void psD(const Arg& first, const Args&... rest) {
        prD(first," "); psD(rest...); // print w/ spaces
    }


    template<class T> void pr(const T& x) { cout << x; }
    template<class Arg, class... Args> void pr(const Arg& first, const Args&... rest) {
        pr(first); pr(rest...);
    }

    template<class T1, class T2> void pr(const pair<T1,T2>& x) {
        pr(x.pA, " ", x.pB);
    }
    template<class T> void prContain(const T& x) {
        bool fst = 1; for (const auto& a: x) pr(!fst?" ":"",a), fst = 0; // const needed for vector<bool>
    }
    template<class T, size_t SZ> void pr(const array<T,SZ>& x) { prContain(x); }
    template<class T> void pr(const vector<T>& x) { prContain(x); }
    template<class T> void pr(const set<T>& x) { prContain(x); }
    template<class T1, class T2> void pr(const map<T1,T2>& x) { prContain(x); }

    void ps() { pr("\n"); }
    template<class Arg> void ps(const Arg& first) {
        pr(first); ps(); // no space at end of line
    }
    template<class Arg, class... Args> void ps(const Arg& first, const Args&... rest) {
        pr(first," "); ps(rest...); // print w/ spaces
    }
}
using namespace output;
// @formatter:on

/* ============================ */

int D[100000];
int st[400000];
int lazy[400000];

void build(int p, int i, int j) {
    lazy[p] = 0;
    if (i == j) {
        st[p] = D[i];
    } else {
        build(p << 1, i, (i+j)/2);
        build((p << 1) + 1, (i+j)/2+1, j);
        st[p] = min(st[p << 1], st[(p << 1) + 1]);
    }
}

void down(int p, int i, int j) {
    if (lazy[p] == 0) return;
    st[p] += lazy[p];
    if (i != j) {
        lazy[(p << 1)] += lazy[p];
        lazy[(p << 1) + 1] += lazy[p];
    }
    lazy[p] = 0;
}

void upd(int p, int i, int j, int l, int r, int v) {
    down(p, i, j);
    if (i > r || j < l) return;
    if (i >= l && j <= r) {
        lazy[p] += v; down(p, i, j);
        return;
    }
    upd((p << 1), i, (i+j)/2, l, r, v);
    upd((p << 1) + 1, (i+j)/2+1, j, l, r, v);
    st[p] = min(st[(p << 1)], st[(p << 1) + 1]);
}

int qry(int p, int i, int j) {
    down(p, i, j);
    if (st[p] != 0) return INF;
    if (i == j) {
        if (st[p] == 0) return i;
        return INF;
    }
    int x = qry((p << 1), i, (i+j)/2);
    if (x != INF) return x;
    return qry((p << 1) + 1, (i+j)/2+1, j);
}

int main() {
    setupIO();

    int n, q; re(n, q);
    int positions[100000][3];
    int minP[100000]; F0R(i, n) minP[i] = INF;
    F0R(j, 3) {
        F0R(i, n) {
            int x;
            re(x);
            positions[x - 1][j] = i;
            MIN(minP[x-1], i);
        }
    }

    F0R(i, n) D[i] = 0;
    F0R(i, n) {
        D[minP[i]]++;
    }
    FOR(i, 1, n) D[i] += D[i-1];
    F0R(i, n) D[i] -= i + 1;
    build(1, 0, n-1);

    F0R(i, q) {
        int x; re(x);
        if (x == 1) {
            int y; re(y); --y;
            int t = qry(1, 0, n-1);
            if (t >= minP[y]) {
                ps("DA");
            } else {
                ps("NE");
            }
        } else {
            int p, a, b; re(p, a, b); --a; --b;
            p--;
            int A = positions[a][p], B = positions[b][p];
            positions[b][p] = A; positions[a][p] = B;

            upd(1, 0, n-1, minP[a], n-1, -1);
            upd(1, 0, n-1, minP[b], n-1, -1);

            minP[a] = INF;
            F0R(i, 3) MIN(minP[a], positions[a][i]);
            minP[b] = INF;
            F0R(i, 3) MIN(minP[b], positions[b][i]);

            upd(1, 0, n-1, minP[a], n-1, 1);
            upd(1, 0, n-1, minP[b], n-1, 1);
        }
    }

    return 0;
}

Compilation message

tenis.cpp: In function 'void input::setupIO(const string&)':
tenis.cpp:86:24: warning: ignoring return value of 'FILE* freopen(const char*, const char*, FILE*)', declared with attribute warn_unused_result [-Wunused-result]
                 freopen((PROB + ".in").c_str(), "r", stdin);
                 ~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
tenis.cpp:87:24: warning: ignoring return value of 'FILE* freopen(const char*, const char*, FILE*)', declared with attribute warn_unused_result [-Wunused-result]
                 freopen((PROB + ".out").c_str(), "w", stdout);
                 ~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# Verdict Execution time Memory Grader output
1 Correct 2 ms 380 KB Output is correct
2 Correct 2 ms 376 KB Output is correct
3 Correct 2 ms 380 KB Output is correct
4 Correct 2 ms 376 KB Output is correct
5 Correct 2 ms 376 KB Output is correct
6 Correct 2 ms 376 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 2 ms 380 KB Output is correct
2 Correct 2 ms 376 KB Output is correct
3 Correct 2 ms 380 KB Output is correct
4 Correct 2 ms 376 KB Output is correct
5 Correct 2 ms 376 KB Output is correct
6 Correct 2 ms 376 KB Output is correct
7 Correct 3 ms 376 KB Output is correct
8 Correct 2 ms 376 KB Output is correct
9 Correct 2 ms 376 KB Output is correct
10 Correct 2 ms 376 KB Output is correct
11 Correct 2 ms 376 KB Output is correct
12 Correct 3 ms 376 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 2 ms 380 KB Output is correct
2 Correct 2 ms 376 KB Output is correct
3 Correct 2 ms 380 KB Output is correct
4 Correct 2 ms 376 KB Output is correct
5 Correct 2 ms 376 KB Output is correct
6 Correct 2 ms 376 KB Output is correct
7 Correct 3 ms 376 KB Output is correct
8 Correct 2 ms 376 KB Output is correct
9 Correct 2 ms 376 KB Output is correct
10 Correct 2 ms 376 KB Output is correct
11 Correct 2 ms 376 KB Output is correct
12 Correct 3 ms 376 KB Output is correct
13 Correct 53 ms 4292 KB Output is correct
14 Correct 48 ms 4384 KB Output is correct
15 Correct 55 ms 4472 KB Output is correct
16 Correct 52 ms 4344 KB Output is correct
17 Correct 47 ms 4344 KB Output is correct
18 Correct 48 ms 4380 KB Output is correct
19 Correct 46 ms 4344 KB Output is correct
20 Correct 47 ms 4380 KB Output is correct
21 Correct 51 ms 4344 KB Output is correct
22 Correct 50 ms 4348 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 90 ms 5112 KB Output is correct
2 Correct 82 ms 7220 KB Output is correct
3 Correct 88 ms 7120 KB Output is correct
4 Correct 84 ms 7180 KB Output is correct
5 Correct 86 ms 7260 KB Output is correct
6 Correct 87 ms 7260 KB Output is correct
7 Correct 79 ms 7160 KB Output is correct
8 Correct 78 ms 7204 KB Output is correct
9 Correct 79 ms 7160 KB Output is correct
10 Correct 82 ms 7148 KB Output is correct
11 Correct 84 ms 7196 KB Output is correct
12 Correct 96 ms 7288 KB Output is correct
13 Correct 80 ms 7160 KB Output is correct
14 Correct 83 ms 7188 KB Output is correct
15 Correct 85 ms 7160 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 2 ms 380 KB Output is correct
2 Correct 2 ms 376 KB Output is correct
3 Correct 2 ms 380 KB Output is correct
4 Correct 2 ms 376 KB Output is correct
5 Correct 2 ms 376 KB Output is correct
6 Correct 2 ms 376 KB Output is correct
7 Correct 3 ms 376 KB Output is correct
8 Correct 2 ms 376 KB Output is correct
9 Correct 2 ms 376 KB Output is correct
10 Correct 2 ms 376 KB Output is correct
11 Correct 2 ms 376 KB Output is correct
12 Correct 3 ms 376 KB Output is correct
13 Correct 53 ms 4292 KB Output is correct
14 Correct 48 ms 4384 KB Output is correct
15 Correct 55 ms 4472 KB Output is correct
16 Correct 52 ms 4344 KB Output is correct
17 Correct 47 ms 4344 KB Output is correct
18 Correct 48 ms 4380 KB Output is correct
19 Correct 46 ms 4344 KB Output is correct
20 Correct 47 ms 4380 KB Output is correct
21 Correct 51 ms 4344 KB Output is correct
22 Correct 50 ms 4348 KB Output is correct
23 Correct 90 ms 5112 KB Output is correct
24 Correct 82 ms 7220 KB Output is correct
25 Correct 88 ms 7120 KB Output is correct
26 Correct 84 ms 7180 KB Output is correct
27 Correct 86 ms 7260 KB Output is correct
28 Correct 87 ms 7260 KB Output is correct
29 Correct 79 ms 7160 KB Output is correct
30 Correct 78 ms 7204 KB Output is correct
31 Correct 79 ms 7160 KB Output is correct
32 Correct 82 ms 7148 KB Output is correct
33 Correct 84 ms 7196 KB Output is correct
34 Correct 96 ms 7288 KB Output is correct
35 Correct 80 ms 7160 KB Output is correct
36 Correct 83 ms 7188 KB Output is correct
37 Correct 85 ms 7160 KB Output is correct
38 Correct 173 ms 7488 KB Output is correct
39 Correct 105 ms 7236 KB Output is correct
40 Correct 182 ms 7672 KB Output is correct
41 Correct 125 ms 7376 KB Output is correct
42 Correct 131 ms 7416 KB Output is correct
43 Correct 179 ms 7492 KB Output is correct
44 Correct 105 ms 7288 KB Output is correct
45 Correct 128 ms 7324 KB Output is correct
46 Correct 115 ms 7260 KB Output is correct
47 Correct 116 ms 7288 KB Output is correct
48 Correct 115 ms 7160 KB Output is correct
49 Correct 125 ms 7416 KB Output is correct
50 Correct 133 ms 7184 KB Output is correct
51 Correct 137 ms 7288 KB Output is correct
52 Correct 195 ms 7412 KB Output is correct
53 Correct 117 ms 7396 KB Output is correct
54 Correct 124 ms 7324 KB Output is correct
55 Correct 129 ms 7308 KB Output is correct
56 Correct 122 ms 7340 KB Output is correct
57 Correct 108 ms 7288 KB Output is correct
58 Correct 140 ms 7416 KB Output is correct