Submission #152653

#TimeUsernameProblemLanguageResultExecution timeMemory
152653qkxwsmSimurgh (IOI17_simurgh)C++14
0 / 100
2 ms376 KiB
#include "simurgh.h" #include <bits/stdc++.h> using namespace std; template<class T, class U> void ckmin(T &a, U b) { if (a > b) a = b; } template<class T, class U> void ckmax(T &a, U b) { if (a < b) a = b; } #define MP make_pair #define PB push_back #define LB lower_bound #define UB upper_bound #define fi first #define se second #define FOR(i, a, b) for (auto i = (a); i < (b); i++) #define FORD(i, a, b) for (auto i = (a) - 1; i >= (b); i--) #define SZ(x) ((int) ((x).size())) #define ALL(x) (x).begin(), (x).end() #define MAXN 513 #define INF 1000000007 #define MOD 1000000931 typedef long long ll; typedef long double ld; typedef pair<int, int> pii; typedef pair<ll, ll> pll; typedef vector<int> vi; typedef vector<ll> vl; typedef vector<pii> vpi; typedef vector<pll> vpl; int N, Q, M, T, K; int eid[MAXN][MAXN]; int res[MAXN][MAXN]; ll pw[MAXN * MAXN], PW[MAXN * MAXN]; vi edge[MAXN]; vi edge1[MAXN]; int parent[MAXN]; bitset<MAXN> seen; map<ll, int> mp; vi ans; struct dsu { int dsu[MAXN]; void init() { FOR(i, 0, N) dsu[i] = i; } int get(int u) { return (u == dsu[u] ? u : dsu[u] = get(dsu[u])); } bool merge(int u, int v) { u = get(u); v = get(v); if (u == v) return false; dsu[v] = u; return true; } }; void dfs1(int u, int p) { for (int v : edge1[u]) { if (v == p) continue; parent[v] = u; dfs1(v, u); } } vi getpath(int u, int v) { vi pu, pv; while(u != 0) { pu.PB(u); u = parent[u]; } pu.PB(0); while(v != 0) { pv.PB(v); v = parent[v]; } pv.PB(0); int r = -1; while(!pu.empty() && !pv.empty() && pu.back() == pv.back()) { r = pu.back(); pu.pop_back(); pv.pop_back(); } pu.PB(r); pu.insert(pu.end(), ALL(pv)); return pu; //gets the path from pu to pv in O(N) time. } dsu D; int ask(vi x) { // cerr << "ASK\n"; // for (int a : x) // { // cerr << a << ' '; // } // cerr << endl; ll sum = 0, SUM = 0; for (int y : x) { sum += pw[y]; if (sum >= INF) sum -= INF; SUM += PW[y]; if (SUM >= MOD) SUM -= MOD; } ll key = sum * MOD + SUM; auto it = mp.find(key); if (it != mp.end()) return it -> se; int res = count_common_roads(x); mp[key] = res; // cerr << "RECEIVE " << res << endl; return res; } vi find_roads(int n, vi U, vi V) { N = n; M = SZ(U); pw[0] = 1; PW[0] = 1; FOR(i, 0, M) { if (U[i] > V[i]) swap(U[i], V[i]); edge[U[i]].PB(V[i]); edge[V[i]].PB(U[i]); eid[U[i]][V[i]] = i; eid[V[i]][U[i]] = i; res[U[i]][V[i]] = -1; res[V[i]][U[i]] = -1; pw[i + 1] = pw[i] + pw[i]; if (pw[i + 1] >= INF) pw[i + 1] -= INF; PW[i + 1] = PW[i] + PW[i]; if (PW[i + 1] >= MOD) PW[i + 1] -= MOD; } D.init(); // cerr << "SPANNING TREE\n"; FOR(u, 0, N) { for (int v : edge[u]) { if (v < u) continue; if (D.merge(u, v)) { // cerr << u << ' ' << v << endl; edge1[u].PB(v); edge1[v].PB(u); } } } dfs1(0, N); parent[0] = N; // cerr << "SOLVE\n"; //ok now the idea is: for all edges, find a cycle. //if the cycle has all new edges, you solve the cycle in O(size) //else, you can just solve the edge using the known edge. FOR(u, 0, N) { for (int v : edge[u]) { if (v < u) continue; if (res[u][v] != -1) continue; if (u == parent[v] || v == parent[u]) continue; // cerr << "NEW ROUND\n"; //ok solve u, v. //find any cycle that (u, v) is part of. vi cyc = getpath(u, v); cyc.PB(u); // cerr << "getpath " << u << ' ' << v << endl; // for (int x : cyc) // { // cerr << x << ' '; // } // cerr << endl; vi qry; int mn = 0; FOR(i, 0, SZ(cyc) - 1) { qry.PB(eid[cyc[i]][cyc[i + 1]]); } int solved = -1; FOR(i, 0, SZ(cyc) - 2) { int w = cyc[i], x = cyc[i + 1]; if (res[w][x] != -1) { // cerr << "SOLVED " << w << ' ' << x << endl; // w..x is solved. solved = i; break; } } //complete the tree seen.reset(); FOR(i, 0, SZ(cyc) - 2) { int w = cyc[i], x = cyc[i + 1]; if (x == parent[w]) seen[w] = true; else seen[x] = true; } FOR(i, 1, N) { if (!seen[i]) { // cerr << "NOTVIS " << i << endl; qry.PB(eid[i][parent[i]]); } } // cerr << "QRY\n"; // for (int x : qry) // { // cerr << x << ' '; // } // cerr << endl; if (solved == -1) { vi dp(SZ(cyc) - 1); assert(SZ(qry) == N); FOR(i, 0, SZ(cyc) - 1) { int x = qry[i]; swap(qry[i], qry[N - 1]); qry.pop_back(); dp[i] = ask(qry); ckmax(mn, dp[i]); qry.PB(x); swap(qry[i], qry[N - 1]); } // cerr << "mn = " << mn << endl; FOR(i, 0, SZ(cyc) - 1) { int w = cyc[i], x = cyc[i + 1]; res[w][x] = (dp[i] == mn ? 0 : 1); // cerr << w << ' ' << x << ' ' << dp[i] << ' ' << res[w][x] << endl; res[x][w] = res[w][x]; } } else { //i...i+1 assert(SZ(qry) == N); // cerr << "HELP " << u << ' ' << v << endl; int x = eid[v][u]; qry.erase(qry.begin() + SZ(cyc) - 1); int cur = ask(qry); qry[solved] = x; mn = ask(qry); res[u][v] = (mn - cur) + res[cyc[solved]][cyc[solved + 1]]; res[v][u] = res[u][v]; } //you can do that with a spanning tree! } } D.init(); FOR(u, 0, N) { for (int v : edge[u]) { if (v < u) continue; if (res[u][v] == 1) { ans.PB(eid[u][v]); D.merge(u, v); } } } FOR(u, 0, N) { for (int v : edge[u]) { if (u != parent[v]) continue; if (D.merge(u, v)) { ans.PB(eid[u][v]); } } } // cerr << "ANS\n"; // for (int x : ans) // { // cerr << x << ' '; // } // cerr << endl; //you can solve a cycle in O(edges) return ans; //for each edge: //if there is a cycle containing it, you can solve everything on the cycle in O(cycle) //otherwise, you know it's good. //so if we can decompose the entire tree into cycles/important edges, we get 51 }
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...