답안 #151130

# 제출 시각 아이디 문제 언어 결과 실행 시간 메모리
151130 2019-09-01T20:25:18 Z Benq 최적의 팀 구성 (FXCUP4_squad) C++17
100 / 100
1470 ms 79200 KB
#include "squad.h" // nice trick ...

#include <bits/stdc++.h>
#include <ext/pb_ds/tree_policy.hpp>
#include <ext/pb_ds/assoc_container.hpp>
#include <ext/rope>

using namespace std;
using namespace __gnu_pbds;
using namespace __gnu_cxx;
 
typedef long long ll;
typedef long double ld;
typedef complex<ld> cd;

typedef pair<int, int> pi;
typedef pair<ll,ll> pl;
typedef pair<ld,ld> pd;

typedef vector<int> vi;
typedef vector<ld> vd;
typedef vector<ll> vl;
typedef vector<pi> vpi;
typedef vector<pl> vpl;
typedef vector<cd> vcd;

template <class T> using Tree = tree<T, null_type, less<T>, rb_tree_tag,tree_order_statistics_node_update>;

#define FOR(i, a, b) for (int i = (a); i < (b); i++)
#define F0R(i, a) for (int i = 0; i < (a); i++)
#define FORd(i,a,b) for (int i = (b)-1; i >= (a); i--)
#define F0Rd(i,a) for (int i = (a)-1; i >= 0; i--)
#define trav(a, x) for (auto& a : x)

#define mp make_pair
#define pb push_back
#define f first
#define s second
#define lb lower_bound
#define ub upper_bound

#define sz(x) (int)x.size()
#define all(x) begin(x), end(x)
#define rsz resize

const int MOD = 1000000007; // 998244353
const ll INF = 1e18;
const int MX = 200005;
const ld PI = 4*atan((ld)1);

template<class T> void ckmin(T &a, T b) { a = min(a, b); }
template<class T> void ckmax(T &a, T b) { a = max(a, b); }

namespace input {
    template<class T> void re(complex<T>& x);
    template<class T1, class T2> void re(pair<T1,T2>& p);
    template<class T> void re(vector<T>& a);
    template<class T, size_t SZ> void re(array<T,SZ>& a);

    template<class T> void re(T& x) { cin >> x; }
    void re(double& x) { string t; re(t); x = stod(t); }
    void re(ld& x) { string t; re(t); x = stold(t); }
    template<class Arg, class... Args> void re(Arg& first, Args&... rest) { 
        re(first); re(rest...); 
    }

    template<class T> void re(complex<T>& x) { T a,b; re(a,b); x = cd(a,b); }
    template<class T1, class T2> void re(pair<T1,T2>& p) { re(p.f,p.s); }
    template<class T> void re(vector<T>& a) { F0R(i,sz(a)) re(a[i]); }
    template<class T, size_t SZ> void re(array<T,SZ>& a) { F0R(i,SZ) re(a[i]); }
}

using namespace input;

namespace output {
    template<class T1, class T2> void pr(const pair<T1,T2>& x);
    template<class T, size_t SZ> void pr(const array<T,SZ>& x);
    template<class T> void pr(const vector<T>& x);
    template<class T> void pr(const set<T>& x);
    template<class T1, class T2> void pr(const map<T1,T2>& x);

    template<class T> void pr(const T& x) { cout << x; }
    template<class Arg, class... Args> void pr(const Arg& first, const Args&... rest) { 
        pr(first); pr(rest...); 
    }

    template<class T1, class T2> void pr(const pair<T1,T2>& x) { 
        pr("{",x.f,", ",x.s,"}"); 
    }
    template<class T> void prContain(const T& x) {
        pr("{");
        bool fst = 1; for (const auto& a: x) pr(!fst?", ":"",a), fst = 0; // const needed for vector<bool>
        pr("}");
    }
    template<class T, size_t SZ> void pr(const array<T,SZ>& x) { prContain(x); }
    template<class T> void pr(const vector<T>& x) { prContain(x); }
    template<class T> void pr(const set<T>& x) { prContain(x); }
    template<class T1, class T2> void pr(const map<T1,T2>& x) { prContain(x); }
    
    void ps() { pr("\n"); }
    template<class Arg> void ps(const Arg& first) { 
        pr(first); ps(); // no space at end of line
    }
    template<class Arg, class... Args> void ps(const Arg& first, const Args&... rest) { 
        pr(first," "); ps(rest...); // print w/ spaces
    }
}

using namespace output;

namespace io {
    void setIn(string s) { freopen(s.c_str(),"r",stdin); }
    void setOut(string s) { freopen(s.c_str(),"w",stdout); }
    void setIO(string s = "") {
        ios_base::sync_with_stdio(0); cin.tie(0); // fast I/O
        if (sz(s)) { setIn(s+".in"), setOut(s+".out"); } // for USACO
    }
}

using namespace io;

template<class T> T invGeneral(T a, T b) {
    a %= b; if (a == 0) return b == 1 ? 0 : -1;
    T x = invGeneral(b,a); 
    return x == -1 ? -1 : ((1-(ll)b*x)/a+b)%b;
}

template<class T> struct modular {
    T val; 
    explicit operator T() const { return val; }
    modular() { val = 0; }
    modular(const ll& v) { 
        val = (-MOD <= v && v <= MOD) ? v : v % MOD;
        if (val < 0) val += MOD;
    }
    
    // friend ostream& operator<<(ostream& os, const modular& a) { return os << a.val; }
    friend void pr(const modular& a) { pr(a.val); }
    friend void re(modular& a) { ll x; re(x); a = modular(x); }
   
    friend bool operator==(const modular& a, const modular& b) { return a.val == b.val; }
    friend bool operator!=(const modular& a, const modular& b) { return !(a == b); }
    friend bool operator<(const modular& a, const modular& b) { return a.val < b.val; }

    modular operator-() const { return modular(-val); }
    modular& operator+=(const modular& m) { if ((val += m.val) >= MOD) val -= MOD; return *this; }
    modular& operator-=(const modular& m) { if ((val -= m.val) < 0) val += MOD; return *this; }
    modular& operator*=(const modular& m) { val = (ll)val*m.val%MOD; return *this; }
    friend modular pow(modular a, ll p) {
        modular ans = 1; for (; p; p /= 2, a *= a) if (p&1) ans *= a;
        return ans;
    }
    friend modular inv(const modular& a) { 
        auto i = invGeneral(a.val,MOD); assert(i != -1);
        return i;
    } // equivalent to return exp(b,MOD-2) if MOD is prime
    modular& operator/=(const modular& m) { return (*this) *= inv(m); }
    
    friend modular operator+(modular a, const modular& b) { return a += b; }
    friend modular operator-(modular a, const modular& b) { return a -= b; }
    friend modular operator*(modular a, const modular& b) { return a *= b; }
    
    friend modular operator/(modular a, const modular& b) { return a /= b; }
};

typedef modular<int> mi;
typedef pair<mi,mi> pmi;
typedef vector<mi> vmi;
typedef vector<pmi> vpmi;

mt19937 rng(chrono::steady_clock::now().time_since_epoch().count());

typedef ll T;

namespace Point {
    typedef pair<T,T> P;
    typedef vector<P> vP;

    P dir(T ang) {
        auto c = exp(ang*complex<T>(0,1));
        return P(c.real(),c.imag());
    }
    
    T norm(P x) { return x.f*x.f+x.s*x.s; }
    T abs(P x) { return sqrt(norm(x)); }
    T angle(P x) { return atan2(x.s,x.f); }
    P conj(P x) { return P(x.f,-x.s); }
    
    P operator+(const P& l, const P& r) { return P(l.f+r.f,l.s+r.s); }
    P operator-(const P& l, const P& r) { return P(l.f-r.f,l.s-r.s); }
    P operator*(const P& l, const T& r) { return P(l.f*r,l.s*r); }
    P operator*(const T& l, const P& r) { return r*l; }
    P operator/(const P& l, const T& r) { return P(l.f/r,l.s/r); }
    P operator*(const P& l, const P& r) { return P(l.f*r.f-l.s*r.s,l.s*r.f+l.f*r.s); }
    P operator/(const P& l, const P& r) { return l*conj(r)/norm(r); }
    
    P& operator+=(P& l, const P& r) { return l = l+r; }
    P& operator-=(P& l, const P& r) { return l = l-r; }
    P& operator*=(P& l, const T& r) { return l = l*r; }
    P& operator/=(P& l, const T& r) { return l = l/r; }
    P& operator*=(P& l, const P& r) { return l = l*r; }
    P& operator/=(P& l, const P& r) { return l = l/r; }
    
    P unit(P x) { return x/abs(x); }
    T dot(P a, P b) { return (conj(a)*b).f; }
    T cross(P a, P b) { return (conj(a)*b).s; }
    T cross(P p, P a, P b) { return cross(a-p,b-p); }
    T dist(P p, P a, P b) { return std::abs(cross(p,a,b))/abs(a-b); }
    
    P rotate(P a, T b) { return a*P(cos(b),sin(b)); }
    P reflect(P p, P a, P b) { return a+conj((p-a)/(b-a))*(b-a); }
    P foot(P p, P a, P b) { return (p+reflect(p,a,b))/(T)2; }
    P extension(P a, P b, P c, P d) {
        T x = cross(a,b,c), y = cross(a,b,d);
        return (d*x-c*y)/(x-y);
    }
    // computes the intersection of line segments AB, CD
    // verification: https://open.kattis.com/problems/segmentintersection
    vP segIntersect(P a, P b, P c, P d) {
        if (a > b) swap(a,b);
        if (c > d) swap(c,d);
    
        auto a1 = cross(a,b,c), a2 = cross(a,b,d);
        if (a1 > a2) swap(a1,a2);
        if (!(a1 <= 0 && a2 >= 0)) return {};
    
        if (a1 == 0 && a2 == 0) {
            if (cross(a,c,d) != 0) return {};
            auto x1 = max(a,c), x2 = min(b,d);
            if (x1 > x2) return {};
            if (x1 == x2) return {x1};
            return {x1,x2};
        }
        
        auto z = extension(a,b,c,d);
        if (a <= z && z <= b) return {z};
        return {};
    }
    
    // sorts points according to atan2
    // verification: ?
    template<class T> int half(pair<T,T> x) { return mp(x.s,x.f) > mp((T)0,(T)0); }
    bool cmp(P a, P b) { 
        int A = half(a), B = half(b);
        if (A != B) return A < B;
        return cross(a,b) > 0;
    }
    
    // computes the center of mass of a polygon with constant mass per unit area
    // verification: kattis polygonarea, VT HSPC 2018 Holiday Stars
    T area(const vP& v) {
        T area = 0;
        F0R(i,sz(v)) {
            int j = (i+1)%sz(v); T a = cross(v[i],v[j]);
            area += a;
        }
        return std::abs(area)/2;
    }
    P centroid(const vP& v) { 
        P cen(0,0); T area = 0; // 2*signed area
        F0R(i,sz(v)) {
            int j = (i+1)%sz(v); T a = cross(v[i],v[j]);
            cen += a*(v[i]+v[j]); area += a;
        }
        return cen/area/(T)3;
    }
    
    // tests whether a point is inside, on, or outside the perimeter of any polygon
    // verification: https://open.kattis.com/problems/pointinpolygon
    string inPoly(const vP& p, P z) {
        int n = sz(p), ans = 0;
        F0R(i,n) {
            P x = p[i], y = p[(i+1)%n];
            if (cross(x,y,z) == 0 && min(x,y) <= z && z <= max(x,y)) return "on";
            if (x.s > y.s) swap(x,y);
            if (x.s <= z.s && y.s > z.s && cross(z,x,y) > 0) ans ^= 1;
        }
        return ans ? "in" : "out";
    }

    pair<P,double> ccCenter(P a, P b, P c) { // circumcenter
        b -= a; c -= a;
        P res = b*c*(conj(c)-conj(b))/(b*conj(c)-conj(b)*c);
        return {a+res,abs(res)};
    }
     
    pair<P, double> mec(vP ps) { // minimum enclosing circle, ex. USACO Camp 2019 Contest 2 #4
        shuffle(all(ps), mt19937(time(0)));
        P o = ps[0]; double r = 0, EPS = 1 + 1e-8;
        F0R(i,sz(ps)) if (abs(o-ps[i]) > r*EPS) {
            o = ps[i], r = 0;
            F0R(j,i) if (abs(o-ps[j]) > r*EPS) {
                o = (ps[i]+ps[j])/2, r = abs(o-ps[i]);
                F0R(k,j) if (abs(o-ps[k]) > r*EPS) 
                    tie(o,r) = ccCenter(ps[i],ps[j],ps[k]);
            }
        }
        return {o,r};
    }
};

using namespace Point;

vP convex_hull(vP P) {
    sort(all(P)); P.erase(unique(all(P)),P.end());
    int n = sz(P); if (n <= 1) return P;
    
    vP up = {P[n-1]};
    F0Rd(i,n-1) {
        while (sz(up) > 1 && cross(up[sz(up)-2], up.back(), P[i]) <= 0) up.pop_back();
        up.pb(P[i]);
    }
    while (sz(up) > 1 && up[sz(up)-1].s <= up[sz(up)-2].s) up.pop_back(); 
    reverse(all(up));
    F0R(i,sz(up)-1) assert(up[i].f < up[i+1].f && up[i].s > up[i+1].s);
    return up;
}

map<P,int> mx, my;
int indx[300005], indy[300005], rx[300005], ry[300005];
vP x, y, xx, yy;

void Init(std::vector<int> A, std::vector<int> D, std::vector<int> p){
	int N = A.size();
	F0R(i,N) {
		x.pb(P(A[i],p[i])); mx[P(A[i],p[i])] = i;
		y.pb(P(D[i],p[i])); my[P(D[i],p[i])] = i;
		indx[i] = indy[i] = -1;
	}
	x = convex_hull(x), y = convex_hull(y);
	F0R(i,sz(x)) {
		int t = mx[x[i]];
		indx[t] = i&1; rx[i] = t;
	}
	F0R(i,sz(y)) {
		int t = my[y[i]];
		indy[t] = i&1; ry[i] = t;
	}
	F0R(i,N) {
		P z(A[i],p[i]);
		if (indx[i] == -1) xx.pb(z);
		z = P(D[i],p[i]);
		if (indy[i] == -1) yy.pb(z);
	}
	xx = convex_hull(xx);
	yy = convex_hull(yy);
	// ps("HUH",y,yy[0],yy[1]);
}

ll eval(P a, int X, int Y) {
	return a.f*X+a.s*Y;
}

int bes(vP& a, int X, int Y) {
	int lo = 0, hi = sz(a)-1;
	while (lo < hi) {
		int mid = (lo+hi)/2;
		if (eval(a[mid],X,Y) < eval(a[mid+1],X,Y)) lo = mid+1;
		else hi = mid;
	}
	return lo;
}

ll getBes(vP& v, int X, int Y) {
	if (!sz(v)) return -INF;
	return eval(v[bes(v,X,Y)],X,Y);
}

long long BestSquad(int X, int Y){
	int a = bes(x,X,Y), b = bes(y,X,Y);
	ll ea = eval(x[a],X,Y), eb = eval(y[b],X,Y);
	if (rx[a] != ry[b]) return ea+eb;

	ll tmpa = getBes(yy,X,Y);
	if (b > 0) ckmax(tmpa,eval(y[b-1],X,Y));
	if (b+1 < sz(y)) ckmax(tmpa,eval(y[b+1],X,Y));

	ll tmpb = getBes(xx,X,Y);
	if (a > 0) ckmax(tmpb,eval(x[a-1],X,Y));
	if (a+1 < sz(x)) ckmax(tmpb,eval(x[a+1],X,Y));

	// ps("HUH",ea+tmpa,eb+tmpb);
	return max(ea+tmpa,eb+tmpb);
}

Compilation message

squad.cpp: In function 'void io::setIn(std::__cxx11::string)':
squad.cpp:112:35: warning: ignoring return value of 'FILE* freopen(const char*, const char*, FILE*)', declared with attribute warn_unused_result [-Wunused-result]
     void setIn(string s) { freopen(s.c_str(),"r",stdin); }
                            ~~~~~~~^~~~~~~~~~~~~~~~~~~~~
squad.cpp: In function 'void io::setOut(std::__cxx11::string)':
squad.cpp:113:36: warning: ignoring return value of 'FILE* freopen(const char*, const char*, FILE*)', declared with attribute warn_unused_result [-Wunused-result]
     void setOut(string s) { freopen(s.c_str(),"w",stdout); }
                             ~~~~~~~^~~~~~~~~~~~~~~~~~~~~~
# 결과 실행 시간 메모리 Grader output
1 Correct 2 ms 376 KB Output is correct
2 Correct 3 ms 632 KB Output is correct
3 Correct 1038 ms 72004 KB Output is correct
4 Correct 955 ms 71796 KB Output is correct
5 Correct 38 ms 5552 KB Output is correct
6 Correct 910 ms 78992 KB Output is correct
7 Correct 1020 ms 79012 KB Output is correct
8 Correct 916 ms 79200 KB Output is correct
# 결과 실행 시간 메모리 Grader output
1 Correct 2 ms 380 KB Output is correct
2 Correct 7 ms 884 KB Output is correct
3 Correct 1076 ms 68620 KB Output is correct
4 Correct 1089 ms 68208 KB Output is correct
5 Correct 32 ms 3184 KB Output is correct
6 Correct 1159 ms 73872 KB Output is correct
7 Correct 1186 ms 73920 KB Output is correct
8 Correct 1166 ms 73776 KB Output is correct
# 결과 실행 시간 메모리 Grader output
1 Correct 2 ms 376 KB Output is correct
2 Correct 3 ms 632 KB Output is correct
3 Correct 1038 ms 72004 KB Output is correct
4 Correct 955 ms 71796 KB Output is correct
5 Correct 38 ms 5552 KB Output is correct
6 Correct 910 ms 78992 KB Output is correct
7 Correct 1020 ms 79012 KB Output is correct
8 Correct 916 ms 79200 KB Output is correct
9 Correct 2 ms 380 KB Output is correct
10 Correct 7 ms 884 KB Output is correct
11 Correct 1076 ms 68620 KB Output is correct
12 Correct 1089 ms 68208 KB Output is correct
13 Correct 32 ms 3184 KB Output is correct
14 Correct 1159 ms 73872 KB Output is correct
15 Correct 1186 ms 73920 KB Output is correct
16 Correct 1166 ms 73776 KB Output is correct
17 Correct 77 ms 2912 KB Output is correct
18 Correct 9 ms 1144 KB Output is correct
19 Correct 1100 ms 71744 KB Output is correct
20 Correct 1093 ms 67620 KB Output is correct
21 Correct 40 ms 3724 KB Output is correct
22 Correct 1404 ms 79120 KB Output is correct
23 Correct 1470 ms 79040 KB Output is correct
24 Correct 1385 ms 79152 KB Output is correct