제출 #151125

#제출 시각아이디문제언어결과실행 시간메모리
151125Benq최적의 팀 구성 (FXCUP4_squad)C++17
0 / 100
2 ms376 KiB
#include "squad.h" // nice trick ... #include <bits/stdc++.h> #include <ext/pb_ds/tree_policy.hpp> #include <ext/pb_ds/assoc_container.hpp> #include <ext/rope> using namespace std; using namespace __gnu_pbds; using namespace __gnu_cxx; typedef long long ll; typedef long double ld; typedef complex<ld> cd; typedef pair<int, int> pi; typedef pair<ll,ll> pl; typedef pair<ld,ld> pd; typedef vector<int> vi; typedef vector<ld> vd; typedef vector<ll> vl; typedef vector<pi> vpi; typedef vector<pl> vpl; typedef vector<cd> vcd; template <class T> using Tree = tree<T, null_type, less<T>, rb_tree_tag,tree_order_statistics_node_update>; #define FOR(i, a, b) for (int i = (a); i < (b); i++) #define F0R(i, a) for (int i = 0; i < (a); i++) #define FORd(i,a,b) for (int i = (b)-1; i >= (a); i--) #define F0Rd(i,a) for (int i = (a)-1; i >= 0; i--) #define trav(a, x) for (auto& a : x) #define mp make_pair #define pb push_back #define f first #define s second #define lb lower_bound #define ub upper_bound #define sz(x) (int)x.size() #define all(x) begin(x), end(x) #define rsz resize const int MOD = 1000000007; // 998244353 const ll INF = 1e18; const int MX = 200005; const ld PI = 4*atan((ld)1); template<class T> void ckmin(T &a, T b) { a = min(a, b); } template<class T> void ckmax(T &a, T b) { a = max(a, b); } namespace input { template<class T> void re(complex<T>& x); template<class T1, class T2> void re(pair<T1,T2>& p); template<class T> void re(vector<T>& a); template<class T, size_t SZ> void re(array<T,SZ>& a); template<class T> void re(T& x) { cin >> x; } void re(double& x) { string t; re(t); x = stod(t); } void re(ld& x) { string t; re(t); x = stold(t); } template<class Arg, class... Args> void re(Arg& first, Args&... rest) { re(first); re(rest...); } template<class T> void re(complex<T>& x) { T a,b; re(a,b); x = cd(a,b); } template<class T1, class T2> void re(pair<T1,T2>& p) { re(p.f,p.s); } template<class T> void re(vector<T>& a) { F0R(i,sz(a)) re(a[i]); } template<class T, size_t SZ> void re(array<T,SZ>& a) { F0R(i,SZ) re(a[i]); } } using namespace input; namespace output { template<class T1, class T2> void pr(const pair<T1,T2>& x); template<class T, size_t SZ> void pr(const array<T,SZ>& x); template<class T> void pr(const vector<T>& x); template<class T> void pr(const set<T>& x); template<class T1, class T2> void pr(const map<T1,T2>& x); template<class T> void pr(const T& x) { cout << x; } template<class Arg, class... Args> void pr(const Arg& first, const Args&... rest) { pr(first); pr(rest...); } template<class T1, class T2> void pr(const pair<T1,T2>& x) { pr("{",x.f,", ",x.s,"}"); } template<class T> void prContain(const T& x) { pr("{"); bool fst = 1; for (const auto& a: x) pr(!fst?", ":"",a), fst = 0; // const needed for vector<bool> pr("}"); } template<class T, size_t SZ> void pr(const array<T,SZ>& x) { prContain(x); } template<class T> void pr(const vector<T>& x) { prContain(x); } template<class T> void pr(const set<T>& x) { prContain(x); } template<class T1, class T2> void pr(const map<T1,T2>& x) { prContain(x); } void ps() { pr("\n"); } template<class Arg> void ps(const Arg& first) { pr(first); ps(); // no space at end of line } template<class Arg, class... Args> void ps(const Arg& first, const Args&... rest) { pr(first," "); ps(rest...); // print w/ spaces } } using namespace output; namespace io { void setIn(string s) { freopen(s.c_str(),"r",stdin); } void setOut(string s) { freopen(s.c_str(),"w",stdout); } void setIO(string s = "") { ios_base::sync_with_stdio(0); cin.tie(0); // fast I/O if (sz(s)) { setIn(s+".in"), setOut(s+".out"); } // for USACO } } using namespace io; template<class T> T invGeneral(T a, T b) { a %= b; if (a == 0) return b == 1 ? 0 : -1; T x = invGeneral(b,a); return x == -1 ? -1 : ((1-(ll)b*x)/a+b)%b; } template<class T> struct modular { T val; explicit operator T() const { return val; } modular() { val = 0; } modular(const ll& v) { val = (-MOD <= v && v <= MOD) ? v : v % MOD; if (val < 0) val += MOD; } // friend ostream& operator<<(ostream& os, const modular& a) { return os << a.val; } friend void pr(const modular& a) { pr(a.val); } friend void re(modular& a) { ll x; re(x); a = modular(x); } friend bool operator==(const modular& a, const modular& b) { return a.val == b.val; } friend bool operator!=(const modular& a, const modular& b) { return !(a == b); } friend bool operator<(const modular& a, const modular& b) { return a.val < b.val; } modular operator-() const { return modular(-val); } modular& operator+=(const modular& m) { if ((val += m.val) >= MOD) val -= MOD; return *this; } modular& operator-=(const modular& m) { if ((val -= m.val) < 0) val += MOD; return *this; } modular& operator*=(const modular& m) { val = (ll)val*m.val%MOD; return *this; } friend modular pow(modular a, ll p) { modular ans = 1; for (; p; p /= 2, a *= a) if (p&1) ans *= a; return ans; } friend modular inv(const modular& a) { auto i = invGeneral(a.val,MOD); assert(i != -1); return i; } // equivalent to return exp(b,MOD-2) if MOD is prime modular& operator/=(const modular& m) { return (*this) *= inv(m); } friend modular operator+(modular a, const modular& b) { return a += b; } friend modular operator-(modular a, const modular& b) { return a -= b; } friend modular operator*(modular a, const modular& b) { return a *= b; } friend modular operator/(modular a, const modular& b) { return a /= b; } }; typedef modular<int> mi; typedef pair<mi,mi> pmi; typedef vector<mi> vmi; typedef vector<pmi> vpmi; mt19937 rng(chrono::steady_clock::now().time_since_epoch().count()); typedef ll T; namespace Point { typedef pair<T,T> P; typedef vector<P> vP; P dir(T ang) { auto c = exp(ang*complex<T>(0,1)); return P(c.real(),c.imag()); } T norm(P x) { return x.f*x.f+x.s*x.s; } T abs(P x) { return sqrt(norm(x)); } T angle(P x) { return atan2(x.s,x.f); } P conj(P x) { return P(x.f,-x.s); } P operator+(const P& l, const P& r) { return P(l.f+r.f,l.s+r.s); } P operator-(const P& l, const P& r) { return P(l.f-r.f,l.s-r.s); } P operator*(const P& l, const T& r) { return P(l.f*r,l.s*r); } P operator*(const T& l, const P& r) { return r*l; } P operator/(const P& l, const T& r) { return P(l.f/r,l.s/r); } P operator*(const P& l, const P& r) { return P(l.f*r.f-l.s*r.s,l.s*r.f+l.f*r.s); } P operator/(const P& l, const P& r) { return l*conj(r)/norm(r); } P& operator+=(P& l, const P& r) { return l = l+r; } P& operator-=(P& l, const P& r) { return l = l-r; } P& operator*=(P& l, const T& r) { return l = l*r; } P& operator/=(P& l, const T& r) { return l = l/r; } P& operator*=(P& l, const P& r) { return l = l*r; } P& operator/=(P& l, const P& r) { return l = l/r; } P unit(P x) { return x/abs(x); } T dot(P a, P b) { return (conj(a)*b).f; } T cross(P a, P b) { return (conj(a)*b).s; } T cross(P p, P a, P b) { return cross(a-p,b-p); } T dist(P p, P a, P b) { return std::abs(cross(p,a,b))/abs(a-b); } P rotate(P a, T b) { return a*P(cos(b),sin(b)); } P reflect(P p, P a, P b) { return a+conj((p-a)/(b-a))*(b-a); } P foot(P p, P a, P b) { return (p+reflect(p,a,b))/(T)2; } P extension(P a, P b, P c, P d) { T x = cross(a,b,c), y = cross(a,b,d); return (d*x-c*y)/(x-y); } // computes the intersection of line segments AB, CD // verification: https://open.kattis.com/problems/segmentintersection vP segIntersect(P a, P b, P c, P d) { if (a > b) swap(a,b); if (c > d) swap(c,d); auto a1 = cross(a,b,c), a2 = cross(a,b,d); if (a1 > a2) swap(a1,a2); if (!(a1 <= 0 && a2 >= 0)) return {}; if (a1 == 0 && a2 == 0) { if (cross(a,c,d) != 0) return {}; auto x1 = max(a,c), x2 = min(b,d); if (x1 > x2) return {}; if (x1 == x2) return {x1}; return {x1,x2}; } auto z = extension(a,b,c,d); if (a <= z && z <= b) return {z}; return {}; } // sorts points according to atan2 // verification: ? template<class T> int half(pair<T,T> x) { return mp(x.s,x.f) > mp((T)0,(T)0); } bool cmp(P a, P b) { int A = half(a), B = half(b); if (A != B) return A < B; return cross(a,b) > 0; } // computes the center of mass of a polygon with constant mass per unit area // verification: kattis polygonarea, VT HSPC 2018 Holiday Stars T area(const vP& v) { T area = 0; F0R(i,sz(v)) { int j = (i+1)%sz(v); T a = cross(v[i],v[j]); area += a; } return std::abs(area)/2; } P centroid(const vP& v) { P cen(0,0); T area = 0; // 2*signed area F0R(i,sz(v)) { int j = (i+1)%sz(v); T a = cross(v[i],v[j]); cen += a*(v[i]+v[j]); area += a; } return cen/area/(T)3; } // tests whether a point is inside, on, or outside the perimeter of any polygon // verification: https://open.kattis.com/problems/pointinpolygon string inPoly(const vP& p, P z) { int n = sz(p), ans = 0; F0R(i,n) { P x = p[i], y = p[(i+1)%n]; if (cross(x,y,z) == 0 && min(x,y) <= z && z <= max(x,y)) return "on"; if (x.s > y.s) swap(x,y); if (x.s <= z.s && y.s > z.s && cross(z,x,y) > 0) ans ^= 1; } return ans ? "in" : "out"; } pair<P,double> ccCenter(P a, P b, P c) { // circumcenter b -= a; c -= a; P res = b*c*(conj(c)-conj(b))/(b*conj(c)-conj(b)*c); return {a+res,abs(res)}; } pair<P, double> mec(vP ps) { // minimum enclosing circle, ex. USACO Camp 2019 Contest 2 #4 shuffle(all(ps), mt19937(time(0))); P o = ps[0]; double r = 0, EPS = 1 + 1e-8; F0R(i,sz(ps)) if (abs(o-ps[i]) > r*EPS) { o = ps[i], r = 0; F0R(j,i) if (abs(o-ps[j]) > r*EPS) { o = (ps[i]+ps[j])/2, r = abs(o-ps[i]); F0R(k,j) if (abs(o-ps[k]) > r*EPS) tie(o,r) = ccCenter(ps[i],ps[j],ps[k]); } } return {o,r}; } }; using namespace Point; vP convex_hull(vP P) { sort(all(P)); P.erase(unique(all(P)),P.end()); int n = sz(P); if (n <= 1) return P; vP up = {P[n-1]}; F0Rd(i,n-1) { while (sz(up) > 1 && cross(up[sz(up)-2], up.back(), P[i]) <= 0) up.pop_back(); up.pb(P[i]); } while (sz(up) > 1 && up[sz(up)-1].s <= up[sz(up)-2].s) up.pop_back(); reverse(all(up)); F0R(i,sz(up)-1) assert(up[i].f < up[i+1].f && up[i].s > up[i+1].s); return up; } map<P,int> mx, my; int indx[300005], indy[300005], rx[300005], ry[300005]; vP x, y; vP xx[2], yy[2]; void Init(std::vector<int> A, std::vector<int> D, std::vector<int> p){ int N = A.size(); F0R(i,N) { x.pb(P(A[i],p[i])); mx[P(A[i],p[i])] = i; y.pb(P(D[i],p[i])); my[P(D[i],p[i])] = i; indx[i] = indy[i] = -1; } x = convex_hull(x), y = convex_hull(y); F0R(i,sz(x)) { int t = mx[x[i]]; indx[t] = i&1; rx[i] = t; } F0R(i,sz(y)) { int t = my[y[i]]; indy[t] = i&1; ry[i] = t; } F0R(i,N) { P z(A[i],p[i]); if (indx[i] != 1) xx[0].pb(z); if (indx[i] != 0) xx[1].pb(z); z = P(D[i],p[i]); if (indy[i] != 1) yy[0].pb(z); if (indy[i] != 0) yy[1].pb(z); } F0R(i,2) { xx[i] = convex_hull(xx[i]); yy[i] = convex_hull(yy[i]); } ps("HUH",y,yy[0],yy[1]); } ll eval(P a, int X, int Y) { return a.f*X+a.s*Y; } int bes(vP& a, int X, int Y) { int lo = 0, hi = sz(a)-1; while (lo < hi) { int mid = (lo+hi)/2; if (eval(a[mid],X,Y) < eval(a[mid+1],X,Y)) lo = mid+1; else hi = mid; } return lo; } long long BestSquad(int X, int Y){ int a = bes(x,X,Y), b = bes(y,X,Y); ll ea = eval(x[a],X,Y), eb = eval(y[b],X,Y); if (rx[a] != ry[b]) return ea+eb; ll ans1 = ea; vP& v = yy[(b&1)^1]; ans1 += eval(v[bes(v,X,Y)],X,Y); ll ans2 = eb; v = xx[(a&1)^1]; ans2 += eval(v[bes(v,X,Y)],X,Y); return max(ans1,ans2); }

컴파일 시 표준 에러 (stderr) 메시지

squad.cpp: In function 'void io::setIn(std::__cxx11::string)':
squad.cpp:112:35: warning: ignoring return value of 'FILE* freopen(const char*, const char*, FILE*)', declared with attribute warn_unused_result [-Wunused-result]
     void setIn(string s) { freopen(s.c_str(),"r",stdin); }
                            ~~~~~~~^~~~~~~~~~~~~~~~~~~~~
squad.cpp: In function 'void io::setOut(std::__cxx11::string)':
squad.cpp:113:36: warning: ignoring return value of 'FILE* freopen(const char*, const char*, FILE*)', declared with attribute warn_unused_result [-Wunused-result]
     void setOut(string s) { freopen(s.c_str(),"w",stdout); }
                             ~~~~~~~^~~~~~~~~~~~~~~~~~~~~~
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...