답안 #151108

# 제출 시각 아이디 문제 언어 결과 실행 시간 메모리
151108 2019-09-01T17:48:01 Z Benq 로카히아 유적 (FXCUP4_lokahia) C++17
100 / 100
3 ms 888 KB
#include "lokahia.h"
#include <bits/stdc++.h>
#include <ext/pb_ds/tree_policy.hpp>
#include <ext/pb_ds/assoc_container.hpp>
#include <ext/rope>

using namespace std;
using namespace __gnu_pbds;
using namespace __gnu_cxx;
 
typedef long long ll;
typedef long double ld;
typedef complex<ld> cd;

typedef pair<int, int> pi;
typedef pair<ll,ll> pl;
typedef pair<ld,ld> pd;

typedef vector<int> vi;
typedef vector<ld> vd;
typedef vector<ll> vl;
typedef vector<pi> vpi;
typedef vector<pl> vpl;
typedef vector<cd> vcd;

template <class T> using Tree = tree<T, null_type, less<T>, rb_tree_tag,tree_order_statistics_node_update>;

#define FOR(i, a, b) for (int i = (a); i < (b); i++)
#define F0R(i, a) for (int i = 0; i < (a); i++)
#define FORd(i,a,b) for (int i = (b)-1; i >= (a); i--)
#define F0Rd(i,a) for (int i = (a)-1; i >= 0; i--)
#define trav(a, x) for (auto& a : x)

#define mp make_pair
#define pb push_back
#define f first
#define s second
#define lb lower_bound
#define ub upper_bound

#define sz(x) (int)x.size()
#define all(x) begin(x), end(x)
#define rsz resize

const int MOD = 1000000007; // 998244353
const ll INF = 1e18;
const int MX = 200005;
const ld PI = 4*atan((ld)1);

template<class T> void ckmin(T &a, T b) { a = min(a, b); }
template<class T> void ckmax(T &a, T b) { a = max(a, b); }

namespace input {
    template<class T> void re(complex<T>& x);
    template<class T1, class T2> void re(pair<T1,T2>& p);
    template<class T> void re(vector<T>& a);
    template<class T, size_t SZ> void re(array<T,SZ>& a);

    template<class T> void re(T& x) { cin >> x; }
    void re(double& x) { string t; re(t); x = stod(t); }
    void re(ld& x) { string t; re(t); x = stold(t); }
    template<class Arg, class... Args> void re(Arg& first, Args&... rest) { 
        re(first); re(rest...); 
    }

    template<class T> void re(complex<T>& x) { T a,b; re(a,b); x = cd(a,b); }
    template<class T1, class T2> void re(pair<T1,T2>& p) { re(p.f,p.s); }
    template<class T> void re(vector<T>& a) { F0R(i,sz(a)) re(a[i]); }
    template<class T, size_t SZ> void re(array<T,SZ>& a) { F0R(i,SZ) re(a[i]); }
}

using namespace input;

namespace output {
    template<class T1, class T2> void pr(const pair<T1,T2>& x);
    template<class T, size_t SZ> void pr(const array<T,SZ>& x);
    template<class T> void pr(const vector<T>& x);
    template<class T> void pr(const set<T>& x);
    template<class T1, class T2> void pr(const map<T1,T2>& x);

    template<class T> void pr(const T& x) { cout << x; }
    template<class Arg, class... Args> void pr(const Arg& first, const Args&... rest) { 
        pr(first); pr(rest...); 
    }

    template<class T1, class T2> void pr(const pair<T1,T2>& x) { 
        pr("{",x.f,", ",x.s,"}"); 
    }
    template<class T> void prContain(const T& x) {
        pr("{");
        bool fst = 1; for (const auto& a: x) pr(!fst?", ":"",a), fst = 0; // const needed for vector<bool>
        pr("}");
    }
    template<class T, size_t SZ> void pr(const array<T,SZ>& x) { prContain(x); }
    template<class T> void pr(const vector<T>& x) { prContain(x); }
    template<class T> void pr(const set<T>& x) { prContain(x); }
    template<class T1, class T2> void pr(const map<T1,T2>& x) { prContain(x); }
    
    void ps() { pr("\n"); }
    template<class Arg> void ps(const Arg& first) { 
        pr(first); ps(); // no space at end of line
    }
    template<class Arg, class... Args> void ps(const Arg& first, const Args&... rest) { 
        pr(first," "); ps(rest...); // print w/ spaces
    }
}

using namespace output;

namespace io {
    void setIn(string s) { freopen(s.c_str(),"r",stdin); }
    void setOut(string s) { freopen(s.c_str(),"w",stdout); }
    void setIO(string s = "") {
        ios_base::sync_with_stdio(0); cin.tie(0); // fast I/O
        if (sz(s)) { setIn(s+".in"), setOut(s+".out"); } // for USACO
    }
}

using namespace io;

template<class T> T invGeneral(T a, T b) {
    a %= b; if (a == 0) return b == 1 ? 0 : -1;
    T x = invGeneral(b,a); 
    return x == -1 ? -1 : ((1-(ll)b*x)/a+b)%b;
}

template<class T> struct modular {
    T val; 
    explicit operator T() const { return val; }
    modular() { val = 0; }
    modular(const ll& v) { 
        val = (-MOD <= v && v <= MOD) ? v : v % MOD;
        if (val < 0) val += MOD;
    }
    
    // friend ostream& operator<<(ostream& os, const modular& a) { return os << a.val; }
    friend void pr(const modular& a) { pr(a.val); }
    friend void re(modular& a) { ll x; re(x); a = modular(x); }
   
    friend bool operator==(const modular& a, const modular& b) { return a.val == b.val; }
    friend bool operator!=(const modular& a, const modular& b) { return !(a == b); }
    friend bool operator<(const modular& a, const modular& b) { return a.val < b.val; }

    modular operator-() const { return modular(-val); }
    modular& operator+=(const modular& m) { if ((val += m.val) >= MOD) val -= MOD; return *this; }
    modular& operator-=(const modular& m) { if ((val -= m.val) < 0) val += MOD; return *this; }
    modular& operator*=(const modular& m) { val = (ll)val*m.val%MOD; return *this; }
    friend modular pow(modular a, ll p) {
        modular ans = 1; for (; p; p /= 2, a *= a) if (p&1) ans *= a;
        return ans;
    }
    friend modular inv(const modular& a) { 
        auto i = invGeneral(a.val,MOD); assert(i != -1);
        return i;
    } // equivalent to return exp(b,MOD-2) if MOD is prime
    modular& operator/=(const modular& m) { return (*this) *= inv(m); }
    
    friend modular operator+(modular a, const modular& b) { return a += b; }
    friend modular operator-(modular a, const modular& b) { return a -= b; }
    friend modular operator*(modular a, const modular& b) { return a *= b; }
    
    friend modular operator/(modular a, const modular& b) { return a /= b; }
};

typedef modular<int> mi;
typedef pair<mi,mi> pmi;
typedef vector<mi> vmi;
typedef vector<pmi> vpmi;

mt19937 rng(chrono::steady_clock::now().time_since_epoch().count());

int ans[201][201];
int N;

int query(int a, int b) {
	if (a > b) swap(a,b);
	if (ans[a][b] == MOD) ans[a][b] = CollectRelics(a,b);
	return ans[a][b];
}

bool ok(int t) {
	return 0 <= t && t < N;
}

int FindBase(int _N){
	N = _N;
	if (N == 1) return 0;
	/*CollectRelics(0, 2);
	CollectRelics(1, 3);
	CollectRelics(2, 4);*/
	F0R(i,N) F0R(j,N) {
		if (i == j) ans[i][j] = -MOD;
		else ans[i][j] = MOD;
	}
	vector<pair<vi,vi>> comp;
	vi cur;
	F0R(i,N) {
		if (!sz(cur)) {
			cur.pb(i);
			comp.pb({{i},{}});
		} else {
			if (query(cur[0],i) == -1) {
				cur.pop_back();
				comp.back().s.pb(i);
			} else {
				cur.pb(i);
				comp.back().f.pb(i);
			}
		}
	}
	int x = comp.back().f[0];
	vi v;
	trav(t,comp) {
		if (query(t.f[0],x) != -1) v.insert(v.end(),all(t.f));
		else {
			trav(z,t.s) if (query(x,z) != -1) v.insert(v.end(),z);
		}
	}
	if (sz(v) <= N/2) return -1;
	F0R(i,N) if (ok(ans[min(i,x)][max(i,x)])) return ans[min(i,x)][max(i,x)];
	exit(5);
}

Compilation message

lokahia.cpp: In function 'void io::setIn(std::__cxx11::string)':
lokahia.cpp:111:35: warning: ignoring return value of 'FILE* freopen(const char*, const char*, FILE*)', declared with attribute warn_unused_result [-Wunused-result]
     void setIn(string s) { freopen(s.c_str(),"r",stdin); }
                            ~~~~~~~^~~~~~~~~~~~~~~~~~~~~
lokahia.cpp: In function 'void io::setOut(std::__cxx11::string)':
lokahia.cpp:112:36: warning: ignoring return value of 'FILE* freopen(const char*, const char*, FILE*)', declared with attribute warn_unused_result [-Wunused-result]
     void setOut(string s) { freopen(s.c_str(),"w",stdout); }
                             ~~~~~~~^~~~~~~~~~~~~~~~~~~~~~
# 결과 실행 시간 메모리 Grader output
1 Correct 3 ms 760 KB Correct : C = 207
2 Correct 3 ms 760 KB Correct : C = 277
3 Correct 3 ms 760 KB Correct : C = 199
4 Correct 3 ms 760 KB Correct : C = 198
5 Correct 3 ms 760 KB Correct : C = 198
6 Correct 2 ms 380 KB Correct : C = 4
7 Correct 3 ms 888 KB Correct : C = 279
8 Correct 3 ms 760 KB Correct : C = 298
9 Correct 2 ms 632 KB Correct : C = 121
10 Correct 3 ms 760 KB Correct : C = 204
11 Correct 2 ms 504 KB Correct : C = 0
12 Correct 2 ms 632 KB Correct : C = 119
13 Correct 2 ms 632 KB Correct : C = 177
14 Correct 3 ms 764 KB Correct : C = 297
15 Correct 2 ms 760 KB Correct : C = 178
16 Correct 2 ms 632 KB Correct : C = 118
17 Correct 3 ms 760 KB Correct : C = 205
18 Correct 2 ms 632 KB Correct : C = 121
19 Correct 2 ms 632 KB Correct : C = 177
20 Correct 2 ms 632 KB Correct : C = 126
21 Correct 3 ms 760 KB Correct : C = 201
22 Correct 3 ms 760 KB Correct : C = 255
23 Correct 3 ms 760 KB Correct : C = 269
24 Correct 3 ms 760 KB Correct : C = 199
25 Correct 2 ms 632 KB Correct : C = 119
26 Correct 3 ms 760 KB Correct : C = 204
27 Correct 2 ms 632 KB Correct : C = 167