답안 #151082

# 제출 시각 아이디 문제 언어 결과 실행 시간 메모리
151082 2019-09-01T17:06:52 Z Benq Bulb Game (FXCUP4_bulb) C++17
100 / 100
133 ms 22812 KB
#include "bulb.h"
#pragma GCC optimize ("O3")
#pragma GCC target ("sse4")

#include <bits/stdc++.h>
#include <ext/pb_ds/tree_policy.hpp>
#include <ext/pb_ds/assoc_container.hpp>
#include <ext/rope>

using namespace std;
using namespace __gnu_pbds;
using namespace __gnu_cxx;
 
typedef long long ll;
typedef long double ld;
typedef complex<ld> cd;

typedef pair<int, int> pi;
typedef pair<ll,ll> pl;
typedef pair<ld,ld> pd;

typedef vector<int> vi;
typedef vector<ld> vd;
typedef vector<ll> vl;
typedef vector<pi> vpi;
typedef vector<pl> vpl;
typedef vector<cd> vcd;

template <class T> using Tree = tree<T, null_type, less<T>, rb_tree_tag,tree_order_statistics_node_update>;

#define FOR(i, a, b) for (int i = (a); i < (b); i++)
#define F0R(i, a) for (int i = 0; i < (a); i++)
#define FORd(i,a,b) for (int i = (b)-1; i >= (a); i--)
#define F0Rd(i,a) for (int i = (a)-1; i >= 0; i--)
#define trav(a, x) for (auto& a : x)

#define mp make_pair
#define pb push_back
#define f first
#define s second
#define lb lower_bound
#define ub upper_bound

#define sz(x) (int)x.size()
#define all(x) begin(x), end(x)
#define rsz resize

const int MOD = 1000000007; // 998244353
const ll INF = 1e18;
const int MX = 200005;
const ld PI = 4*atan((ld)1);

template<class T> void ckmin(T &a, T b) { a = min(a, b); }
template<class T> void ckmax(T &a, T b) { a = max(a, b); }

namespace input {
    template<class T> void re(complex<T>& x);
    template<class T1, class T2> void re(pair<T1,T2>& p);
    template<class T> void re(vector<T>& a);
    template<class T, size_t SZ> void re(array<T,SZ>& a);

    template<class T> void re(T& x) { cin >> x; }
    void re(double& x) { string t; re(t); x = stod(t); }
    void re(ld& x) { string t; re(t); x = stold(t); }
    template<class Arg, class... Args> void re(Arg& first, Args&... rest) { 
        re(first); re(rest...); 
    }

    template<class T> void re(complex<T>& x) { T a,b; re(a,b); x = cd(a,b); }
    template<class T1, class T2> void re(pair<T1,T2>& p) { re(p.f,p.s); }
    template<class T> void re(vector<T>& a) { F0R(i,sz(a)) re(a[i]); }
    template<class T, size_t SZ> void re(array<T,SZ>& a) { F0R(i,SZ) re(a[i]); }
}

using namespace input;

namespace output {
    template<class T1, class T2> void pr(const pair<T1,T2>& x);
    template<class T, size_t SZ> void pr(const array<T,SZ>& x);
    template<class T> void pr(const vector<T>& x);
    template<class T> void pr(const set<T>& x);
    template<class T1, class T2> void pr(const map<T1,T2>& x);

    template<class T> void pr(const T& x) { cout << x; }
    template<class Arg, class... Args> void pr(const Arg& first, const Args&... rest) { 
        pr(first); pr(rest...); 
    }

    template<class T1, class T2> void pr(const pair<T1,T2>& x) { 
        pr("{",x.f,", ",x.s,"}"); 
    }
    template<class T> void prContain(const T& x) {
        pr("{");
        bool fst = 1; for (const auto& a: x) pr(!fst?", ":"",a), fst = 0; // const needed for vector<bool>
        pr("}");
    }
    template<class T, size_t SZ> void pr(const array<T,SZ>& x) { prContain(x); }
    template<class T> void pr(const vector<T>& x) { prContain(x); }
    template<class T> void pr(const set<T>& x) { prContain(x); }
    template<class T1, class T2> void pr(const map<T1,T2>& x) { prContain(x); }
    
    void ps() { pr("\n"); }
    template<class Arg> void ps(const Arg& first) { 
        pr(first); ps(); // no space at end of line
    }
    template<class Arg, class... Args> void ps(const Arg& first, const Args&... rest) { 
        pr(first," "); ps(rest...); // print w/ spaces
    }
}

using namespace output;

namespace io {
    void setIn(string s) { freopen(s.c_str(),"r",stdin); }
    void setOut(string s) { freopen(s.c_str(),"w",stdout); }
    void setIO(string s = "") {
        ios_base::sync_with_stdio(0); cin.tie(0); // fast I/O
        if (sz(s)) { setIn(s+".in"), setOut(s+".out"); } // for USACO
    }
}

using namespace io;

template<class T> T invGeneral(T a, T b) {
    a %= b; if (a == 0) return b == 1 ? 0 : -1;
    T x = invGeneral(b,a); 
    return x == -1 ? -1 : ((1-(ll)b*x)/a+b)%b;
}

template<class T> struct modular {
    T val; 
    explicit operator T() const { return val; }
    modular() { val = 0; }
    modular(const ll& v) { 
        val = (-MOD <= v && v <= MOD) ? v : v % MOD;
        if (val < 0) val += MOD;
    }
    
    // friend ostream& operator<<(ostream& os, const modular& a) { return os << a.val; }
    friend void pr(const modular& a) { pr(a.val); }
    friend void re(modular& a) { ll x; re(x); a = modular(x); }
   
    friend bool operator==(const modular& a, const modular& b) { return a.val == b.val; }
    friend bool operator!=(const modular& a, const modular& b) { return !(a == b); }
    friend bool operator<(const modular& a, const modular& b) { return a.val < b.val; }

    modular operator-() const { return modular(-val); }
    modular& operator+=(const modular& m) { if ((val += m.val) >= MOD) val -= MOD; return *this; }
    modular& operator-=(const modular& m) { if ((val -= m.val) < 0) val += MOD; return *this; }
    modular& operator*=(const modular& m) { val = (ll)val*m.val%MOD; return *this; }
    friend modular pow(modular a, ll p) {
        modular ans = 1; for (; p; p /= 2, a *= a) if (p&1) ans *= a;
        return ans;
    }
    friend modular inv(const modular& a) { 
        auto i = invGeneral(a.val,MOD); assert(i != -1);
        return i;
    } // equivalent to return exp(b,MOD-2) if MOD is prime
    modular& operator/=(const modular& m) { return (*this) *= inv(m); }
    
    friend modular operator+(modular a, const modular& b) { return a += b; }
    friend modular operator-(modular a, const modular& b) { return a -= b; }
    friend modular operator*(modular a, const modular& b) { return a *= b; }
    
    friend modular operator/(modular a, const modular& b) { return a /= b; }
};

typedef modular<int> mi;
typedef pair<mi,mi> pmi;
typedef vector<mi> vmi;
typedef vector<pmi> vpmi;

mt19937 rng(chrono::steady_clock::now().time_since_epoch().count());

vi col;
vi L, R;
int N;

int dfs(int x) {
	if (x < 0) return x;
	dfs(R[x]);
	return col[x] = dfs(L[x]);
}

int getCol(int x) { return x < 0 ? x : col[x]; }

vi change, must;
bool bad[300000];
int sz[300000];

void DFS(int x, int y, int numSwitch) {
	if (x < 0) {
		if (x == -2) {
			assert(sz(change));
			if (sz(change) == 1) {
				if (numSwitch != N) {
					bad[change[0]] = 1;
					must.pb(y); sz[y] ++;
				}
			} else if (sz(change) == 2) {
				bad[change[0]] = bad[change[1]] = 1;
			}
		}
		return;
	}
	DFS(L[x],x,numSwitch+1);
	change.pb(x); DFS(R[x],x,numSwitch+1); change.pop_back();
}

vi res;

void DFS2(int x) {
	if (L[x] >= 0) {
		DFS2(L[x]);
		sz[x] += sz[L[x]];
	}
	if (R[x] >= 0) {
		DFS2(R[x]);
		sz[x] += sz[R[x]];
	}
	if (sz[x] == sz(must)) res.pb(x);
}

int FindWinner(int T, std::vector<int> _L, std::vector<int> _R){
	L = _L, R = _R; N = L.size();
	// {
		int cur = 0; while (cur >= 0) cur = L[cur];
		if (cur == -2) return 0;
		DFS(0,MOD,0); DFS2(0);
		trav(t,res) if (!bad[t]) return 1;
		// red -> move such that next one must be red
	/*} else { // move to make it red
		col.rsz(N); dfs(0);
		int cur = 0, numSwitch = 0; 
		while (cur >= 0) {
			if (getCol(R[cur]) == -1) return 1;
			cur = L[cur]; numSwitch ++;
		}
		if (numSwitch != N && cur == -1) return 1;
	}*/
	return 0;
}

Compilation message

bulb.cpp: In function 'void io::setIn(std::__cxx11::string)':
bulb.cpp:114:35: warning: ignoring return value of 'FILE* freopen(const char*, const char*, FILE*)', declared with attribute warn_unused_result [-Wunused-result]
     void setIn(string s) { freopen(s.c_str(),"r",stdin); }
                            ~~~~~~~^~~~~~~~~~~~~~~~~~~~~
bulb.cpp: In function 'void io::setOut(std::__cxx11::string)':
bulb.cpp:115:36: warning: ignoring return value of 'FILE* freopen(const char*, const char*, FILE*)', declared with attribute warn_unused_result [-Wunused-result]
     void setOut(string s) { freopen(s.c_str(),"w",stdout); }
                             ~~~~~~~^~~~~~~~~~~~~~~~~~~~~~
# 결과 실행 시간 메모리 Grader output
1 Correct 2 ms 348 KB Output is correct
2 Correct 2 ms 376 KB Output is correct
3 Correct 2 ms 376 KB Output is correct
4 Correct 2 ms 376 KB Output is correct
5 Correct 2 ms 348 KB Output is correct
6 Correct 2 ms 376 KB Output is correct
7 Correct 2 ms 376 KB Output is correct
8 Correct 2 ms 296 KB Output is correct
9 Correct 2 ms 376 KB Output is correct
10 Correct 2 ms 348 KB Output is correct
11 Correct 2 ms 348 KB Output is correct
12 Correct 2 ms 348 KB Output is correct
# 결과 실행 시간 메모리 Grader output
1 Correct 2 ms 348 KB Output is correct
2 Correct 2 ms 256 KB Output is correct
3 Correct 2 ms 348 KB Output is correct
4 Correct 2 ms 376 KB Output is correct
5 Correct 2 ms 376 KB Output is correct
6 Correct 2 ms 376 KB Output is correct
7 Correct 2 ms 348 KB Output is correct
8 Correct 2 ms 376 KB Output is correct
9 Correct 2 ms 376 KB Output is correct
10 Correct 2 ms 296 KB Output is correct
11 Correct 2 ms 376 KB Output is correct
12 Correct 2 ms 348 KB Output is correct
13 Correct 2 ms 348 KB Output is correct
14 Correct 2 ms 348 KB Output is correct
15 Correct 2 ms 296 KB Output is correct
16 Correct 2 ms 368 KB Output is correct
17 Correct 2 ms 376 KB Output is correct
18 Correct 2 ms 432 KB Output is correct
19 Correct 2 ms 380 KB Output is correct
20 Correct 2 ms 376 KB Output is correct
21 Correct 2 ms 376 KB Output is correct
22 Correct 2 ms 308 KB Output is correct
23 Correct 2 ms 376 KB Output is correct
24 Correct 2 ms 348 KB Output is correct
25 Correct 2 ms 376 KB Output is correct
26 Correct 2 ms 376 KB Output is correct
# 결과 실행 시간 메모리 Grader output
1 Correct 2 ms 348 KB Output is correct
2 Correct 2 ms 256 KB Output is correct
3 Correct 2 ms 348 KB Output is correct
4 Correct 2 ms 376 KB Output is correct
5 Correct 2 ms 376 KB Output is correct
6 Correct 2 ms 376 KB Output is correct
7 Correct 2 ms 348 KB Output is correct
8 Correct 2 ms 376 KB Output is correct
9 Correct 2 ms 376 KB Output is correct
10 Correct 2 ms 296 KB Output is correct
11 Correct 2 ms 376 KB Output is correct
12 Correct 2 ms 348 KB Output is correct
13 Correct 2 ms 348 KB Output is correct
14 Correct 2 ms 348 KB Output is correct
15 Correct 2 ms 296 KB Output is correct
16 Correct 2 ms 368 KB Output is correct
17 Correct 2 ms 376 KB Output is correct
18 Correct 2 ms 432 KB Output is correct
19 Correct 2 ms 380 KB Output is correct
20 Correct 2 ms 376 KB Output is correct
21 Correct 2 ms 376 KB Output is correct
22 Correct 2 ms 308 KB Output is correct
23 Correct 2 ms 376 KB Output is correct
24 Correct 2 ms 348 KB Output is correct
25 Correct 2 ms 376 KB Output is correct
26 Correct 2 ms 376 KB Output is correct
27 Correct 73 ms 7332 KB Output is correct
28 Correct 99 ms 10828 KB Output is correct
29 Correct 96 ms 8624 KB Output is correct
30 Correct 117 ms 22812 KB Output is correct
31 Correct 116 ms 22740 KB Output is correct
32 Correct 96 ms 8668 KB Output is correct
33 Correct 102 ms 10836 KB Output is correct
34 Correct 94 ms 8568 KB Output is correct
35 Correct 96 ms 8596 KB Output is correct
36 Correct 95 ms 8620 KB Output is correct
37 Correct 95 ms 8544 KB Output is correct
38 Correct 96 ms 8640 KB Output is correct
39 Correct 101 ms 10792 KB Output is correct
40 Correct 100 ms 10832 KB Output is correct
41 Correct 95 ms 8568 KB Output is correct
42 Correct 96 ms 8608 KB Output is correct
43 Correct 102 ms 8632 KB Output is correct
44 Correct 96 ms 8592 KB Output is correct
45 Correct 96 ms 8676 KB Output is correct
46 Correct 95 ms 8608 KB Output is correct
47 Correct 101 ms 11812 KB Output is correct
48 Correct 102 ms 13596 KB Output is correct
49 Correct 133 ms 12116 KB Output is correct
50 Correct 102 ms 13600 KB Output is correct