#include "bartender.h"
#include <bits/stdc++.h>
using namespace std;
const int LARGESTS_FILLED_UNTIL = 5;
const int RAND_SEED = 689;
int fill_largests(int K, vector<int>& R, vector<int>& magic, vector<int>& A, int pos[]) {
int N = R.size();
int cur_num = N;
int cur_fill = K;
int prv_magic = -1;
while (cur_fill >= LARGESTS_FILLED_UNTIL && cur_num >= 1) {
if (magic[pos[cur_num]] >= prv_magic) {
A[pos[cur_num]] = cur_fill;
prv_magic = magic[pos[cur_num]];
cur_num--;
} else {
prv_magic = magic[pos[cur_num]];
cur_fill--;
}
}
return cur_num;
}
vector<int> BlendWines(int K, vector<int> R) {
int N = R.size();
srand(RAND_SEED);
vector<int> magic;
for (int i = 0; i < N; i++) {
magic.push_back(i);
}
random_shuffle(magic.begin(), magic.end());
int pos[35] = {};
for (int i = 0; i < N; i++) {
pos[R[i]] = i;
}
vector<int> A(N, 0);
int unfilled_n = fill_largests(K, R, magic, A, pos);
int filled_until = 0;
for (int i = 1; i < LARGESTS_FILLED_UNTIL; i++) {
int unfilled_cnt = (unfilled_n - filled_until);
int group_size = min(unfilled_cnt, 6);
if ((LARGESTS_FILLED_UNTIL - i) * 5 >= unfilled_cnt) {
group_size = min(group_size, 5);
}
for (int j = filled_until + 1; j <= filled_until + group_size; j++) {
A[pos[j]] = i;
}
filled_until += group_size;
}
/*
for (int i = 0; i < N; i++) {
printf("%2d ", A[i]);
}
printf("\n");
*/
return A;
}
#include "taster.h"
#include <bits/stdc++.h>
using namespace std;
const int LARGESTS_FILLED_UNTIL = 5;
const int RAND_SEED = 689;
// merge insertion sort ---- merge insertion sort ---- merge insertion sort ---- merge insertion sort
const bool CONSIDER_INSERTION = true;
const bool CONSIDER_MERGE = true;
const bool CONSIDER_MI = true;
const bool INSERTION_BS = true;
const bool INSERTION_TS = false;
const bool MERGE_OPTIMIZE = true;
const bool MI_HALF = true;
const bool MI_OPTIMIZE = true;
int cmp(int u, int v) {
int result = Compare(u, v);
return result == 1;
}
vector<int> operator+ (const vector<int>& u, const vector<int>& v) {
vector<int> result(u.begin(), u.end());
result.insert(result.end(), v.begin(), v.end());
return result;
}
vector<int> operator+ (const vector<int>& u, const int& v) {
return u + vector<int>(1, v);
}
vector<int> operator+ (const int& u, const vector<int>& v) {
return vector<int>(1, u) + v;
}
tuple<vector<int>, vector<int>, vector<int>> split(const vector<int>& T, int size1, int size2 = -1, int size3 = -1) {
if (size2 == -1) {
size2 = T.size() - size1;
size3 = 0;
} else
if (size3 == -1) {
size3 = T.size() - size1 - size2;
}
return make_tuple(vector<int>(T.begin(), T.begin() + size1),
vector<int>(T.begin() + size1, T.begin() + size1 + size2),
vector<int>(T.begin() + size1 + size2, T.end()));
}
const int INF = 123456;
int N;
vector<int> sortDP;
map<int, int> memInsertionCost;
map<pair<int, int>, int> memMultiInsertionsCost;
map<pair<int, int>, vector<pair<int, int>>> memMultiInsertionsDP;
// cost for inserting ONE element into a SORTED array of "size - 1" elements
int insertionCost(int size) {
if (memInsertionCost.count(size)) {
return memInsertionCost[size];
}
int result = INF;
if (INSERTION_BS) {
result = min(result, 2 + insertionCost(size - size / 2));
}
if (INSERTION_TS) {
result = min(result, 3 + insertionCost((size - 1) / 3 + 1));
}
return memInsertionCost[size] = result;
}
// cost to sort two SORTED arrays of "size1" and "size2" elements
int mergeCost(int size1, int size2) {
if (!MERGE_OPTIMIZE || !INSERTION_TS) {
return 2 * (size1 + size2 - 1);
}
if (size1 == 1 && size2 == 1) {
return 2;
}
return 2 * (size1 + size2 - 3) + 3;
}
// dp[i].first = value
// dp[i].second = backtrack
vector<pair<int, int>> multiInsertionsDP(int size1, int size2) {
if (memMultiInsertionsDP.count(make_pair(size1, size2))) {
return memMultiInsertionsDP[make_pair(size1, size2)];
}
vector<int> guaranteedPos(size2, 0);
for (int i = 0; i < size2; i++) {
guaranteedPos[i] = min(i + 3, size1 + 1);
}
vector<pair<int, int>> dp(size2, make_pair(INF, -1));
for (int i = 0; i < size2; i++) {
for (int j = 0; j <= i; j++) {
int cost = (j > 0) ? dp[j - 1].first : 0;
for (int k = 0; k <= i - j; k++) {
cost += insertionCost(guaranteedPos[i - k] + k + j);
}
dp[i] = min(dp[i], make_pair(cost, j));
}
}
return memMultiInsertionsDP[make_pair(size1, size2)] = dp;
}
// https://en.wikipedia.org/wiki/Merge-insertion_sort
// "size1" is the size of X
// "size2" is the size of Y
int multiInsertionsCost(int size1, int size2) {
if (size2 == 0) {
return 0;
}
if (memMultiInsertionsCost.count(make_pair(size1, size2))) {
return memMultiInsertionsCost[make_pair(size1, size2)];
}
vector<pair<int, int> > dp = multiInsertionsDP(size1, size2);
return memMultiInsertionsCost[make_pair(size1, size2)] = dp[size2 - 1].first;
}
void precompute(int N) {
memInsertionCost[1] = 0;
sortDP.push_back(0);
sortDP.push_back(0);
for (int i = sortDP.size(); sortDP.size() <= N; i = sortDP.size()) {
sortDP.push_back(INF);
if (CONSIDER_INSERTION) {
// inserting ONE element into "i - 1" SORTED elements
sortDP[i] = min(sortDP[i], sortDP[i - 1] + insertionCost(i));
}
if (CONSIDER_MERGE) {
// merging TWO SORTED arrays of "j" and "i - j" elements
for (int j = 1; j <= i - j; j++) {
sortDP[i] = min(sortDP[i], sortDP[j] + sortDP[i - j] + mergeCost(j, i - j));
}
}
if (CONSIDER_MI) {
// merge-insertion sort with parition of "j" and "i - j" elements
for (int j = MI_HALF ? i / 2 : 1; j <= i - j; j++) {
int sizeOfX = j + 1;
int sizeOfY = i - j - 1;
int costX = 2 * j + sortDP[j];
int costY = multiInsertionsCost(sizeOfX, sizeOfY);
sortDP[i] = min(sortDP[i], costX + costY);
}
}
}
}
vector<int> solve(const vector<int>& arr);
vector<int> insertion(const vector<int>& arr, int extra) {
int len = arr.size();
if (len == 0) {
return vector<int>{extra};
}
if (INSERTION_BS && 2 + insertionCost(len + 1 - (len + 1) / 2) == insertionCost(len + 1)) {
int verdict = cmp(arr[len / 2], extra);
vector<int> prefix(arr.begin(), arr.begin() + len / 2);
vector<int> suffix(arr.begin() + len / 2 + 1, arr.end());
if (verdict == 1) {
prefix = insertion(prefix, extra);
} else {
suffix = insertion(suffix, extra);
}
return prefix + arr[len / 2] + suffix;
}
assert(false);
}
vector<int> merge(const vector<int>& u, const vector<int>& v) {
vector<int> result;
int pu = 0, pv = 0;
while (pu + MERGE_OPTIMIZE < u.size() && pv + MERGE_OPTIMIZE < v.size()) {
int verdict = cmp(u[pu], v[pv]);
if (verdict == 0) {
result.push_back(u[pu++]);
} else {
result.push_back(v[pv++]);
}
}
if (MERGE_OPTIMIZE) {
if (pu + 1 == u.size()) {
vector<int> vsuffix;
tie(ignore, vsuffix, ignore) = split(v, pv);
return result + insertion(vsuffix, u[pu]);
}
if (pv + 1 == v.size()) {
vector<int> usuffix;
tie(ignore, usuffix, ignore) = split(u, pu);
return result + insertion(usuffix, v[pv]);
}
}
while (pu < u.size()) {
result.push_back(u[pu++]);
}
while (pv < v.size()) {
result.push_back(v[pv++]);
}
return result;
}
vector<int> reorder(const vector<int>& elements, const vector<int>& from, const vector<int>& to) {
map<int, int> originalPosition;
for (int i = 0; i < from.size(); i++) {
originalPosition[from[i]] = i;
}
vector<int> result = elements;
for (int i = 0; i < to.size(); i++) {
result[i] = elements[originalPosition[to[i]]];
}
return result;
}
vector<int> mergeInsertion(const vector<int>& arr, int partitionSize) {
assert(partitionSize * 2 <= arr.size());
vector<int> partitionX(arr.begin(), arr.begin() + partitionSize);
vector<int> partitionY(arr.begin() + partitionSize, arr.end());
for (int i = 0; i < partitionSize; i++) {
int verdict = cmp(partitionX[i], partitionY[i]);
if (!verdict) { // swapping larger elements to X
swap(partitionX[i], partitionY[i]);
}
}
vector<int> newPartitionX = solve(partitionX);
vector<int> newPartitionY = reorder(partitionY, partitionX, newPartitionX);
newPartitionX.insert(newPartitionX.begin(), newPartitionY[0]);
newPartitionY.erase(newPartitionY.begin());
if (newPartitionY.size() == 0) {
return newPartitionX;
}
vector<pair<int, int>> dp = multiInsertionsDP(newPartitionX.size(), newPartitionY.size());
vector<int> insertionOrder;
int cur = newPartitionY.size() - 1;
while (cur >= 0) {
int to = dp[cur].second;
for (int i = to; i <= cur; i++) {
insertionOrder.push_back(i);
}
cur = to - 1;
}
reverse(insertionOrder.begin(), insertionOrder.end());
vector<int> result(newPartitionX.begin(), newPartitionX.end());
for (int i = 0; i < newPartitionY.size(); i++) {
vector<int> prefix, suffix;
int prefixSize = min((int)result.size(), i + insertionOrder[i] + 2);
if (MI_OPTIMIZE) {
if (insertionOrder[i] + 2 < newPartitionX.size()) {
int relativeX = newPartitionX[insertionOrder[i] + 2];
for (int j = 0; j < result.size(); j++) {
if (result[j] == relativeX) {
prefixSize = j;
}
}
}
}
tie(prefix, suffix, ignore) = split(result, prefixSize);
result = insertion(prefix, newPartitionY[insertionOrder[i]]) + suffix;
}
return result;
}
vector<int> solve(const vector<int>& arr) {
int len = arr.size();
if (len <= 1) {
return arr;
}
if (CONSIDER_INSERTION) {
if (sortDP[len] == sortDP[len - 1] + insertionCost(len)) {
vector<int> prefix(arr.begin(), arr.end() - 1);
return insertion(solve(prefix), arr[len - 1]);
}
}
if (CONSIDER_MERGE) {
for (int i = 1; i <= len - i; i++) {
if (sortDP[len] == sortDP[i] + sortDP[len - i] + mergeCost(i, len - i)) {
vector<int> prefix(arr.begin(), arr.begin() + i);
vector<int> suffix(arr.begin() + i, arr.end());
return merge(solve(prefix), solve(suffix));
}
}
}
if (CONSIDER_MI) {
for (int i = MI_HALF ? len / 2 : 1; i <= len - i; i++) {
int sizeOfX = i + 1;
int sizeOfY = len - i - 1;
int costX = 2 * i + sortDP[i];
int costY = multiInsertionsCost(sizeOfX, sizeOfY);
if (sortDP[len] == costX + costY) {
return mergeInsertion(arr, i);
}
}
}
assert(false);
}
// merge insertion sort ---- merge insertion sort ---- merge insertion sort ---- merge insertion sort
int handle_largests(int K, vector<int>& A, vector<int>& magic, vector<int>& R) {
int N = A.size();
int next_num = N;
for (int filled_as = K; filled_as >= LARGESTS_FILLED_UNTIL; filled_as--) {
vector<pair<int, int> > filled_bingo;
for (int i = 0; i < N; i++) {
if (A[i] == filled_as) {
filled_bingo.push_back(make_pair(magic[i], i));
}
}
sort(filled_bingo.begin(), filled_bingo.end());
for (int i = 0; i < filled_bingo.size(); i++) {
R[filled_bingo[i].second] = next_num--;
}
}
return next_num;
}
void handle_smallests(vector<int>& A, vector<int>& R) {
int N = A.size();
int next_num = 1;
for (int filled_as = 1; filled_as < LARGESTS_FILLED_UNTIL; filled_as++) {
vector<int> filled_bingo;
for (int i = 0; i < N; i++) {
if (A[i] == filled_as) {
filled_bingo.push_back(i);
}
}
random_shuffle(filled_bingo.begin(), filled_bingo.end());
filled_bingo = solve(filled_bingo);
for (int i = 0; i < filled_bingo.size(); i++) {
R[filled_bingo[i]] = next_num++;
}
}
}
vector<int> SortWines(int K, vector<int> A) {
int N = A.size();
precompute(N);
srand(RAND_SEED);
vector<int> magic;
for (int i = 0; i < N; i++) {
magic.push_back(i);
}
random_shuffle(magic.begin(), magic.end());
vector<int> R(N, 0);
handle_largests(K, A, magic, R);
handle_smallests(A, R);
/*
for (int i = 0; i < N; i++) {
printf("%2d ", R[i]);
}
printf("\n");
*/
return R;
}
Compilation message
taster.cpp: In function 'void precompute(int)':
taster.cpp:139:44: warning: comparison between signed and unsigned integer expressions [-Wsign-compare]
for (int i = sortDP.size(); sortDP.size() <= N; i = sortDP.size()) {
~~~~~~~~~~~~~~^~~~
taster.cpp: In function 'std::vector<int> merge(const std::vector<int>&, const std::vector<int>&)':
taster.cpp:198:29: warning: comparison between signed and unsigned integer expressions [-Wsign-compare]
while (pu + MERGE_OPTIMIZE < u.size() && pv + MERGE_OPTIMIZE < v.size()) {
~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~
taster.cpp:198:63: warning: comparison between signed and unsigned integer expressions [-Wsign-compare]
while (pu + MERGE_OPTIMIZE < u.size() && pv + MERGE_OPTIMIZE < v.size()) {
~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~
taster.cpp:209:14: warning: comparison between signed and unsigned integer expressions [-Wsign-compare]
if (pu + 1 == u.size()) {
~~~~~~~^~~~~~~~~~~
taster.cpp:214:14: warning: comparison between signed and unsigned integer expressions [-Wsign-compare]
if (pv + 1 == v.size()) {
~~~~~~~^~~~~~~~~~~
taster.cpp:221:12: warning: comparison between signed and unsigned integer expressions [-Wsign-compare]
while (pu < u.size()) {
~~~^~~~~~~~~~
taster.cpp:225:12: warning: comparison between signed and unsigned integer expressions [-Wsign-compare]
while (pv < v.size()) {
~~~^~~~~~~~~~
taster.cpp: In function 'std::vector<int> reorder(const std::vector<int>&, const std::vector<int>&, const std::vector<int>&)':
taster.cpp:234:20: warning: comparison between signed and unsigned integer expressions [-Wsign-compare]
for (int i = 0; i < from.size(); i++) {
~~^~~~~~~~~~~~~
taster.cpp:240:20: warning: comparison between signed and unsigned integer expressions [-Wsign-compare]
for (int i = 0; i < to.size(); i++) {
~~^~~~~~~~~~~
In file included from /usr/include/c++/7/cassert:44:0,
from /usr/include/x86_64-linux-gnu/c++/7/bits/stdc++.h:33,
from taster.cpp:2:
taster.cpp: In function 'std::vector<int> mergeInsertion(const std::vector<int>&, int)':
taster.cpp:248:27: warning: comparison between signed and unsigned integer expressions [-Wsign-compare]
assert(partitionSize * 2 <= arr.size());
~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~
taster.cpp:287:20: warning: comparison between signed and unsigned integer expressions [-Wsign-compare]
for (int i = 0; i < newPartitionY.size(); i++) {
~~^~~~~~~~~~~~~~~~~~~~~~
taster.cpp:292:30: warning: comparison between signed and unsigned integer expressions [-Wsign-compare]
if (insertionOrder[i] + 2 < newPartitionX.size()) {
taster.cpp:294:23: warning: comparison between signed and unsigned integer expressions [-Wsign-compare]
for (int j = 0; j < result.size(); j++) {
~~^~~~~~~~~~~~~~~
taster.cpp: In function 'int handle_largests(int, std::vector<int>&, std::vector<int>&, std::vector<int>&)':
taster.cpp:362:21: warning: comparison between signed and unsigned integer expressions [-Wsign-compare]
for (int i = 0; i < filled_bingo.size(); i++) {
~~^~~~~~~~~~~~~~~~~~~~~
taster.cpp: In function 'void handle_smallests(std::vector<int>&, std::vector<int>&)':
taster.cpp:384:21: warning: comparison between signed and unsigned integer expressions [-Wsign-compare]
for (int i = 0; i < filled_bingo.size(); i++) {
~~^~~~~~~~~~~~~~~~~~~~~
# |
Verdict |
Execution time |
Memory |
Grader output |
1 |
Correct |
9 ms |
908 KB |
Correct |
2 |
Correct |
9 ms |
884 KB |
Correct |
3 |
Correct |
10 ms |
908 KB |
Correct |
4 |
Correct |
8 ms |
644 KB |
Correct |
5 |
Correct |
8 ms |
772 KB |
Correct |
6 |
Correct |
10 ms |
772 KB |
Correct |
7 |
Correct |
10 ms |
908 KB |
Correct |
8 |
Correct |
11 ms |
772 KB |
Correct |
9 |
Correct |
10 ms |
908 KB |
Correct |
10 |
Correct |
10 ms |
780 KB |
Correct |
11 |
Correct |
10 ms |
644 KB |
Correct |
12 |
Correct |
9 ms |
780 KB |
Correct |
13 |
Correct |
10 ms |
772 KB |
Correct |
14 |
Correct |
10 ms |
804 KB |
Correct |
15 |
Correct |
10 ms |
772 KB |
Correct |
16 |
Correct |
10 ms |
900 KB |
Correct |
17 |
Correct |
10 ms |
908 KB |
Correct |
18 |
Correct |
10 ms |
772 KB |
Correct |
19 |
Correct |
10 ms |
908 KB |
Correct |
20 |
Correct |
10 ms |
780 KB |
Correct |
21 |
Correct |
9 ms |
664 KB |
Correct |
22 |
Correct |
10 ms |
908 KB |
Correct |
23 |
Correct |
9 ms |
900 KB |
Correct |
24 |
Correct |
9 ms |
732 KB |
Correct |
25 |
Correct |
10 ms |
908 KB |
Correct |
26 |
Correct |
9 ms |
772 KB |
Correct |
27 |
Correct |
9 ms |
772 KB |
Correct |
28 |
Correct |
10 ms |
812 KB |
Correct |
29 |
Correct |
10 ms |
772 KB |
Correct |
30 |
Correct |
10 ms |
780 KB |
Correct |
31 |
Correct |
10 ms |
780 KB |
Correct |
32 |
Correct |
9 ms |
908 KB |
Correct |
33 |
Correct |
10 ms |
772 KB |
Correct |
34 |
Correct |
9 ms |
908 KB |
Correct |
35 |
Correct |
10 ms |
980 KB |
Correct |
36 |
Correct |
10 ms |
644 KB |
Correct |
37 |
Correct |
9 ms |
884 KB |
Correct |
38 |
Correct |
10 ms |
908 KB |
Correct |
39 |
Correct |
8 ms |
772 KB |
Correct |
40 |
Correct |
9 ms |
780 KB |
Correct |
41 |
Correct |
9 ms |
772 KB |
Correct |
42 |
Correct |
10 ms |
816 KB |
Correct |
43 |
Correct |
10 ms |
772 KB |
Correct |
44 |
Correct |
9 ms |
644 KB |
Correct |
45 |
Correct |
9 ms |
772 KB |
Correct |
46 |
Correct |
10 ms |
772 KB |
Correct |
47 |
Correct |
9 ms |
908 KB |
Correct |
48 |
Correct |
9 ms |
772 KB |
Correct |
49 |
Correct |
10 ms |
1060 KB |
Correct |
50 |
Correct |
11 ms |
780 KB |
Correct |
51 |
Correct |
10 ms |
908 KB |
Correct |
52 |
Correct |
10 ms |
908 KB |
Correct |
53 |
Correct |
8 ms |
772 KB |
Correct |
54 |
Correct |
11 ms |
676 KB |
Correct |
55 |
Correct |
11 ms |
772 KB |
Correct |
56 |
Correct |
10 ms |
772 KB |
Correct |
57 |
Correct |
10 ms |
644 KB |
Correct |
58 |
Correct |
11 ms |
644 KB |
Correct |
59 |
Correct |
10 ms |
964 KB |
Correct |
60 |
Correct |
10 ms |
908 KB |
Correct |
61 |
Correct |
8 ms |
772 KB |
Correct |
62 |
Correct |
10 ms |
772 KB |
Correct |
63 |
Correct |
9 ms |
884 KB |
Correct |
64 |
Correct |
10 ms |
908 KB |
Correct |
65 |
Correct |
10 ms |
908 KB |
Correct |
66 |
Correct |
10 ms |
772 KB |
Correct |
67 |
Correct |
10 ms |
780 KB |
Correct |
68 |
Correct |
10 ms |
908 KB |
Correct |
69 |
Correct |
10 ms |
772 KB |
Correct |
70 |
Correct |
10 ms |
908 KB |
Correct |
71 |
Correct |
9 ms |
772 KB |
Correct |
72 |
Correct |
10 ms |
908 KB |
Correct |
73 |
Correct |
10 ms |
940 KB |
Correct |
74 |
Partially correct |
10 ms |
988 KB |
Wrong |
75 |
Correct |
10 ms |
884 KB |
Correct |
76 |
Correct |
9 ms |
772 KB |
Correct |
77 |
Correct |
8 ms |
772 KB |
Correct |
78 |
Correct |
9 ms |
644 KB |
Correct |
79 |
Correct |
10 ms |
644 KB |
Correct |
80 |
Correct |
10 ms |
772 KB |
Correct |
81 |
Correct |
9 ms |
644 KB |
Correct |
82 |
Partially correct |
10 ms |
908 KB |
Wrong |
83 |
Correct |
10 ms |
908 KB |
Correct |
84 |
Correct |
10 ms |
972 KB |
Correct |
85 |
Correct |
9 ms |
772 KB |
Correct |
86 |
Correct |
10 ms |
908 KB |
Correct |
87 |
Correct |
9 ms |
772 KB |
Correct |
88 |
Correct |
10 ms |
644 KB |
Correct |
89 |
Correct |
9 ms |
772 KB |
Correct |
90 |
Correct |
9 ms |
772 KB |
Correct |
91 |
Correct |
9 ms |
772 KB |
Correct |
92 |
Correct |
9 ms |
772 KB |
Correct |
93 |
Correct |
10 ms |
908 KB |
Correct |
94 |
Partially correct |
10 ms |
1024 KB |
Wrong |
95 |
Correct |
10 ms |
1020 KB |
Correct |
96 |
Partially correct |
10 ms |
888 KB |
Wrong |
97 |
Partially correct |
10 ms |
908 KB |
Wrong |
98 |
Partially correct |
10 ms |
908 KB |
Wrong |
99 |
Partially correct |
10 ms |
960 KB |
Wrong |
100 |
Partially correct |
10 ms |
780 KB |
Wrong |
101 |
Partially correct |
10 ms |
1016 KB |
Wrong |
102 |
Partially correct |
10 ms |
1024 KB |
Wrong |
103 |
Correct |
10 ms |
772 KB |
Correct |
104 |
Correct |
10 ms |
892 KB |
Correct |
105 |
Correct |
11 ms |
772 KB |
Correct |
106 |
Correct |
10 ms |
772 KB |
Correct |
107 |
Correct |
10 ms |
956 KB |
Correct |
108 |
Correct |
8 ms |
748 KB |
Correct |
109 |
Partially correct |
9 ms |
908 KB |
Wrong |
110 |
Partially correct |
9 ms |
772 KB |
Wrong |
111 |
Partially correct |
10 ms |
848 KB |
Wrong |
112 |
Partially correct |
10 ms |
772 KB |
Wrong |
113 |
Partially correct |
10 ms |
772 KB |
Wrong |
114 |
Partially correct |
10 ms |
772 KB |
Wrong |
115 |
Partially correct |
9 ms |
772 KB |
Wrong |
116 |
Partially correct |
8 ms |
1016 KB |
Wrong |
117 |
Partially correct |
9 ms |
1020 KB |
Wrong |
118 |
Partially correct |
11 ms |
780 KB |
Wrong |
119 |
Partially correct |
11 ms |
940 KB |
Wrong |
120 |
Partially correct |
10 ms |
884 KB |
Wrong |