답안 #149645

# 제출 시각 아이디 문제 언어 결과 실행 시간 메모리
149645 2019-09-01T06:53:49 Z Ian and 2-bit memory(#3648, percywtc, nhho, ulna) 포도주 시음 (FXCUP4_wine) C++17
9 / 100
11 ms 1020 KB
#include "bartender.h"
#include <bits/stdc++.h>
using namespace std;

const int LARGESTS_FILLED_UNTIL = 6;

int fill_largests(int K, vector<int>& R, vector<int>& magic, vector<int>& A, int pos[]) {
	int N = R.size();

	int cur_num = N;
	int cur_fill = K;
	int prv_magic = -1;

	while (cur_fill >= LARGESTS_FILLED_UNTIL && cur_num >= 1) {
		if (magic[pos[cur_num]] >= prv_magic) {
			A[pos[cur_num]] = cur_fill;
			prv_magic = magic[pos[cur_num]];
			cur_num--;
		} else {
			prv_magic = magic[pos[cur_num]];
			cur_fill--;
		}
	}

	return cur_num;
}

vector<int> BlendWines(int K, vector<int> R) {
	int N = R.size();

	srand(882);
	vector<int> magic;
	for (int i = 0; i < N; i++) {
		magic.push_back(i);
	}
	random_shuffle(magic.begin(), magic.end());

	int pos[35] = {};
	for (int i = 0; i < N; i++) {
		pos[R[i]] = i;
	}

	vector<int> A(N, 0);

	int unfilled_n = fill_largests(K, R, magic, A, pos);
	int filled_until = 0;

	for (int i = 1; i < LARGESTS_FILLED_UNTIL; i++) {
		int unfilled_cnt = (unfilled_n - filled_until);
		int group_size = min(unfilled_cnt, 5);
		if ((6 - i) * 4 >= unfilled_cnt) {
			group_size = min(group_size, 4);
		}

		for (int j = filled_until + 1; j <= filled_until + group_size; j++) {
			A[pos[j]] = i;
		}

		filled_until += group_size;
	}
/*
	for (int i = 0; i < N; i++) {
		printf("%2d ", A[i]);
	}
	printf("\n");
*/
	return A;
}
#include "taster.h"
#include <bits/stdc++.h>
using namespace std;

// merge insertion sort ---- merge insertion sort ---- merge insertion sort ---- merge insertion sort
const bool CONSIDER_INSERTION = true;
const bool CONSIDER_MERGE = true;
const bool CONSIDER_MI = true;

const bool INSERTION_BS = true;
const bool INSERTION_TS = false;

const bool MERGE_OPTIMIZE = true;

const bool MI_HALF = true;
const bool MI_OPTIMIZE = true;

vector<int> operator+ (const vector<int>& u, const vector<int>& v) {
	vector<int> result(u.begin(), u.end());
	result.insert(result.end(), v.begin(), v.end());

	return result;
}

vector<int> operator+ (const vector<int>& u, const int& v) {
	return u + vector<int>(1, v);
}

vector<int> operator+ (const int& u, const vector<int>& v) {
	return vector<int>(1, u) + v;
}

tuple<vector<int>, vector<int>, vector<int>> split(const vector<int>& T, int size1, int size2 = -1, int size3 = -1) {
	if (size2 == -1) {
		size2 = T.size() - size1;
		size3 = 0;
	} else
	if (size3 == -1) {
		size3 = T.size() - size1 - size2;
	}

	return make_tuple(vector<int>(T.begin(), T.begin() + size1),
						vector<int>(T.begin() + size1, T.begin() + size1 + size2),
						vector<int>(T.begin() + size1 + size2, T.end()));
}

const int INF = 123456;
int N;
vector<int> sortDP;

map<int, int> memInsertionCost;
map<pair<int, int>, int> memMultiInsertionsCost;
map<pair<int, int>, vector<pair<int, int>>> memMultiInsertionsDP;

// cost for inserting ONE element into a SORTED array of "size - 1" elements
int insertionCost(int size) {
	if (memInsertionCost.count(size)) {
		return memInsertionCost[size];
	}
	int result = INF;
	if (INSERTION_BS) {
		result = min(result, 2 + insertionCost(size - size / 2));
	}
	if (INSERTION_TS) {
		result = min(result, 3 + insertionCost((size - 1) / 3 + 1));
	}
	return memInsertionCost[size] = result;
}

// cost to sort two SORTED arrays of "size1" and "size2" elements
int mergeCost(int size1, int size2) {
	if (!MERGE_OPTIMIZE || !INSERTION_TS) {
		return 2 * (size1 + size2 - 1);
	}
	if (size1 == 1 && size2 == 1) {
		return 2;
	}
	return 2 * (size1 + size2 - 3) + 3;
}


// dp[i].first = value
// dp[i].second = backtrack
vector<pair<int, int>> multiInsertionsDP(int size1, int size2) {
	if (memMultiInsertionsDP.count(make_pair(size1, size2))) {
		return memMultiInsertionsDP[make_pair(size1, size2)];
	}
	vector<int> guaranteedPos(size2, 0);

	for (int i = 0; i < size2; i++) {
		guaranteedPos[i] = min(i + 3, size1 + 1);
	}

	vector<pair<int, int>> dp(size2, make_pair(INF, -1));

	for (int i = 0; i < size2; i++) {
		for (int j = 0; j <= i; j++) {
			int cost = (j > 0) ? dp[j - 1].first : 0;
			for (int k = 0; k <= i - j; k++) {
				cost += insertionCost(guaranteedPos[i - k] + k + j);
			}
			dp[i] = min(dp[i], make_pair(cost, j));
		}
	}

	return memMultiInsertionsDP[make_pair(size1, size2)] = dp;
}

// https://en.wikipedia.org/wiki/Merge-insertion_sort
// "size1" is the size of X
// "size2" is the size of Y
int multiInsertionsCost(int size1, int size2) {
	if (size2 == 0) {
		return 0;
	}
	if (memMultiInsertionsCost.count(make_pair(size1, size2))) {
		return memMultiInsertionsCost[make_pair(size1, size2)];
	}
	
	vector<pair<int, int> > dp = multiInsertionsDP(size1, size2);

	return memMultiInsertionsCost[make_pair(size1, size2)] = dp[size2 - 1].first;
}

void precompute(int N) {
	memInsertionCost[1] = 0;

	sortDP.push_back(0);
	sortDP.push_back(0);

	for (int i = sortDP.size(); sortDP.size() <= N; i = sortDP.size()) {
		sortDP.push_back(INF);

		if (CONSIDER_INSERTION) {
			// inserting ONE element into "i - 1" SORTED elements
			sortDP[i] = min(sortDP[i], sortDP[i - 1] + insertionCost(i));
		}

		if (CONSIDER_MERGE) {
			// merging TWO SORTED arrays of "j" and "i - j" elements
			for (int j = 1; j <= i - j; j++) {
				sortDP[i] = min(sortDP[i], sortDP[j] + sortDP[i - j] + mergeCost(j, i - j));
			}
		}

		if (CONSIDER_MI) {
			// merge-insertion sort with parition of "j" and "i - j" elements
			for (int j = MI_HALF ? i / 2 : 1; j <= i - j; j++) {
				int sizeOfX = j + 1;
				int sizeOfY = i - j - 1;
				int costX = 2 * j + sortDP[j];
				int costY = multiInsertionsCost(sizeOfX, sizeOfY);

				sortDP[i] = min(sortDP[i], costX + costY);
			}
		}
	}
}

vector<int> solve(const vector<int>& arr);

vector<int> insertion(const vector<int>& arr, int extra) {
	int len = arr.size();

	if (len == 0) {
		return vector<int>{extra};
	}

	if (INSERTION_BS && 2 + insertionCost(len + 1 - (len + 1) / 2) == insertionCost(len + 1)) {
		int verdict = Compare(arr[len / 2], extra) == -1;

		vector<int> prefix(arr.begin(), arr.begin() + len / 2);
		vector<int> suffix(arr.begin() + len / 2 + 1, arr.end());
		
		if (verdict == 1) {
			prefix = insertion(prefix, extra);
		} else {
			suffix = insertion(suffix, extra);
		}

		return prefix + arr[len / 2] + suffix;
	}

	assert(false);
}

vector<int> merge(const vector<int>& u, const vector<int>& v) {
	vector<int> result;
	int pu = 0, pv = 0;
	while (pu + MERGE_OPTIMIZE < u.size() && pv + MERGE_OPTIMIZE < v.size()) {
		int verdict = Compare(u[pu], v[pv]) == -1;

		if (verdict == 0) {
			result.push_back(u[pu++]);
		} else {
			result.push_back(v[pv++]);
		}
	}

	if (MERGE_OPTIMIZE) {
		if (pu + 1 == u.size()) {
			vector<int> vsuffix;
			tie(ignore, vsuffix, ignore) = split(v, pv);
			return result + insertion(vsuffix, u[pu]);
		}
		if (pv + 1 == v.size()) {
			vector<int> usuffix;
			tie(ignore, usuffix, ignore) = split(u, pu);
			return result + insertion(usuffix, v[pv]);
		}
	}

	while (pu < u.size()) {
		result.push_back(u[pu++]);
	}

	while (pv < v.size()) {
		result.push_back(v[pv++]);
	}

	return result;
}

vector<int> reorder(const vector<int>& elements, const vector<int>& from, const vector<int>& to) {
	map<int, int> originalPosition;
	for (int i = 0; i < from.size(); i++) {
		originalPosition[from[i]] = i;
	}

	vector<int> result = elements;

	for (int i = 0; i < to.size(); i++) {
		result[i] = elements[originalPosition[to[i]]];
	}

	return result;
}

vector<int> mergeInsertion(const vector<int>& arr, int partitionSize) {
	assert(partitionSize * 2 <= arr.size());

	vector<int> partitionX(arr.begin(), arr.begin() + partitionSize);
	vector<int> partitionY(arr.begin() + partitionSize, arr.end());

	for (int i = 0; i < partitionSize; i++) {
		int verdict = Compare(partitionX[i], partitionY[i]) == -1;

		if (!verdict) { // swapping larger elements to X
			swap(partitionX[i], partitionY[i]);
		}
	}

	vector<int> newPartitionX = solve(partitionX);
	vector<int> newPartitionY = reorder(partitionY, partitionX, newPartitionX);
	newPartitionX.insert(newPartitionX.begin(), newPartitionY[0]);
	newPartitionY.erase(newPartitionY.begin());

	if (newPartitionY.size() == 0) {
		return newPartitionX;
	}

	vector<pair<int, int>> dp = multiInsertionsDP(newPartitionX.size(), newPartitionY.size());
	vector<int> insertionOrder;

	int cur = newPartitionY.size() - 1;

	while (cur >= 0) {
		int to = dp[cur].second;
		for (int i = to; i <= cur; i++) {
			insertionOrder.push_back(i);
		}
		cur = to - 1;
	}

	reverse(insertionOrder.begin(), insertionOrder.end());

	vector<int> result(newPartitionX.begin(), newPartitionX.end());

	for (int i = 0; i < newPartitionY.size(); i++) {
		vector<int> prefix, suffix;
		int prefixSize = min((int)result.size(), i + insertionOrder[i] + 2);

		if (MI_OPTIMIZE) {
			if (insertionOrder[i] + 2 < newPartitionX.size()) {
				int relativeX = newPartitionX[insertionOrder[i] + 2];
				for (int j = 0; j < result.size(); j++) {
					if (result[j] == relativeX) {
						prefixSize = j;
					}
				}
			}
		}

		tie(prefix, suffix, ignore) = split(result, prefixSize);
		result = insertion(prefix, newPartitionY[insertionOrder[i]]) + suffix;
	}

	return result;
}

vector<int> solve(const vector<int>& arr) {
	int len = arr.size();

	if (len <= 1) {
		return arr;
	}

	if (CONSIDER_INSERTION) {
		if (sortDP[len] == sortDP[len - 1] + insertionCost(len)) {
			vector<int> prefix(arr.begin(), arr.end() - 1);
			return insertion(solve(prefix), arr[len - 1]);
		}
	}

	if (CONSIDER_MERGE) {
		for (int i = 1; i <= len - i; i++) {
			if (sortDP[len] == sortDP[i] + sortDP[len - i] + mergeCost(i, len - i)) {
				vector<int> prefix(arr.begin(), arr.begin() + i);
				vector<int> suffix(arr.begin() + i, arr.end());
				return merge(solve(prefix), solve(suffix));
			}
		}
	}

	if (CONSIDER_MI) {
		for (int i = MI_HALF ? len / 2 : 1; i <= len - i; i++) {
			int sizeOfX = i + 1;
			int sizeOfY = len - i - 1;
			int costX = 2 * i + sortDP[i];
			int costY = multiInsertionsCost(sizeOfX, sizeOfY);

			if (sortDP[len] == costX + costY) {
				return mergeInsertion(arr, i);
			}
		}
	}

	assert(false);
}
// merge insertion sort ---- merge insertion sort ---- merge insertion sort ---- merge insertion sort

const int LARGESTS_FILLED_UNTIL = 6;

int handle_largests(int K, vector<int>& A, vector<int>& magic, vector<int>& R) {
	int N = A.size();
	int next_num = N;
	for (int filled_as = K; filled_as >= LARGESTS_FILLED_UNTIL; filled_as--) {
		vector<pair<int, int> > filled_bingo;
		for (int i = 0; i < N; i++) {
			if (A[i] == filled_as) {
				filled_bingo.push_back(make_pair(magic[i], i));
			}
		}
		sort(filled_bingo.begin(), filled_bingo.end());

		for (int i = 0; i < filled_bingo.size(); i++) {
			R[filled_bingo[i].second] = next_num--;
		}
	}

	return next_num;
}

void handle_smallests(vector<int>& A, vector<int>& R) {
	int N = A.size();
	int next_num = 1;
	for (int filled_as = 1; filled_as < LARGESTS_FILLED_UNTIL; filled_as++) {
		vector<int> filled_bingo;
		for (int i = 0; i < N; i++) {
			if (A[i] == filled_as) {
				filled_bingo.push_back(i);
			}
		}



		for (int i = 0; i < filled_bingo.size(); i++) {
			R[filled_bingo[i]] = next_num++;
		}
	}
}

vector<int> SortWines(int K, vector<int> A) {
	int N = A.size();
	precompute(N);
	
	srand(882);
	vector<int> magic;
	for (int i = 0; i < N; i++) {
		magic.push_back(i);
	}
	random_shuffle(magic.begin(), magic.end());

	vector<int> R(N, 0);

	handle_largests(K, A, magic, R);
	handle_smallests(A, R);
/*
	for (int i = 0; i < N; i++) {
		printf("%2d ", R[i]);
	}
	printf("\n");
*/
	return R;
}

Compilation message

taster.cpp: In function 'void precompute(int)':
taster.cpp:131:44: warning: comparison between signed and unsigned integer expressions [-Wsign-compare]
  for (int i = sortDP.size(); sortDP.size() <= N; i = sortDP.size()) {
                              ~~~~~~~~~~~~~~^~~~
taster.cpp: In function 'std::vector<int> merge(const std::vector<int>&, const std::vector<int>&)':
taster.cpp:190:29: warning: comparison between signed and unsigned integer expressions [-Wsign-compare]
  while (pu + MERGE_OPTIMIZE < u.size() && pv + MERGE_OPTIMIZE < v.size()) {
         ~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~
taster.cpp:190:63: warning: comparison between signed and unsigned integer expressions [-Wsign-compare]
  while (pu + MERGE_OPTIMIZE < u.size() && pv + MERGE_OPTIMIZE < v.size()) {
                                           ~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~
taster.cpp:201:14: warning: comparison between signed and unsigned integer expressions [-Wsign-compare]
   if (pu + 1 == u.size()) {
       ~~~~~~~^~~~~~~~~~~
taster.cpp:206:14: warning: comparison between signed and unsigned integer expressions [-Wsign-compare]
   if (pv + 1 == v.size()) {
       ~~~~~~~^~~~~~~~~~~
taster.cpp:213:12: warning: comparison between signed and unsigned integer expressions [-Wsign-compare]
  while (pu < u.size()) {
         ~~~^~~~~~~~~~
taster.cpp:217:12: warning: comparison between signed and unsigned integer expressions [-Wsign-compare]
  while (pv < v.size()) {
         ~~~^~~~~~~~~~
taster.cpp: In function 'std::vector<int> reorder(const std::vector<int>&, const std::vector<int>&, const std::vector<int>&)':
taster.cpp:226:20: warning: comparison between signed and unsigned integer expressions [-Wsign-compare]
  for (int i = 0; i < from.size(); i++) {
                  ~~^~~~~~~~~~~~~
taster.cpp:232:20: warning: comparison between signed and unsigned integer expressions [-Wsign-compare]
  for (int i = 0; i < to.size(); i++) {
                  ~~^~~~~~~~~~~
In file included from /usr/include/c++/7/cassert:44:0,
                 from /usr/include/x86_64-linux-gnu/c++/7/bits/stdc++.h:33,
                 from taster.cpp:2:
taster.cpp: In function 'std::vector<int> mergeInsertion(const std::vector<int>&, int)':
taster.cpp:240:27: warning: comparison between signed and unsigned integer expressions [-Wsign-compare]
  assert(partitionSize * 2 <= arr.size());
         ~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~
taster.cpp:279:20: warning: comparison between signed and unsigned integer expressions [-Wsign-compare]
  for (int i = 0; i < newPartitionY.size(); i++) {
                  ~~^~~~~~~~~~~~~~~~~~~~~~
taster.cpp:284:30: warning: comparison between signed and unsigned integer expressions [-Wsign-compare]
    if (insertionOrder[i] + 2 < newPartitionX.size()) {
taster.cpp:286:23: warning: comparison between signed and unsigned integer expressions [-Wsign-compare]
     for (int j = 0; j < result.size(); j++) {
                     ~~^~~~~~~~~~~~~~~
taster.cpp: In function 'int handle_largests(int, std::vector<int>&, std::vector<int>&, std::vector<int>&)':
taster.cpp:356:21: warning: comparison between signed and unsigned integer expressions [-Wsign-compare]
   for (int i = 0; i < filled_bingo.size(); i++) {
                   ~~^~~~~~~~~~~~~~~~~~~~~
taster.cpp: In function 'void handle_smallests(std::vector<int>&, std::vector<int>&)':
taster.cpp:377:21: warning: comparison between signed and unsigned integer expressions [-Wsign-compare]
   for (int i = 0; i < filled_bingo.size(); i++) {
                   ~~^~~~~~~~~~~~~~~~~~~~~
# 결과 실행 시간 메모리 Grader output
1 Correct 10 ms 772 KB Correct
2 Correct 10 ms 732 KB Correct
3 Correct 10 ms 772 KB Correct
4 Correct 10 ms 908 KB Correct
5 Correct 10 ms 908 KB Correct
6 Correct 10 ms 780 KB Correct
7 Correct 11 ms 908 KB Correct
8 Correct 10 ms 772 KB Correct
9 Correct 10 ms 732 KB Correct
10 Correct 11 ms 908 KB Correct
11 Correct 10 ms 772 KB Correct
12 Correct 10 ms 644 KB Correct
13 Correct 10 ms 772 KB Correct
14 Correct 10 ms 772 KB Correct
15 Correct 10 ms 836 KB Correct
16 Correct 10 ms 900 KB Correct
17 Correct 10 ms 644 KB Correct
18 Correct 10 ms 908 KB Correct
19 Correct 10 ms 884 KB Correct
20 Correct 10 ms 792 KB Correct
21 Correct 8 ms 772 KB Correct
22 Correct 10 ms 772 KB Correct
23 Correct 10 ms 908 KB Correct
24 Correct 9 ms 780 KB Correct
25 Correct 10 ms 908 KB Correct
26 Correct 10 ms 780 KB Correct
27 Correct 10 ms 884 KB Correct
28 Correct 11 ms 908 KB Correct
29 Correct 11 ms 772 KB Correct
30 Correct 11 ms 772 KB Correct
31 Correct 10 ms 644 KB Correct
32 Correct 10 ms 772 KB Correct
33 Correct 10 ms 948 KB Correct
34 Correct 9 ms 908 KB Correct
35 Correct 9 ms 908 KB Correct
36 Partially correct 9 ms 908 KB Wrong
37 Correct 11 ms 772 KB Correct
38 Correct 10 ms 908 KB Correct
39 Correct 10 ms 908 KB Correct
40 Correct 10 ms 644 KB Correct
41 Correct 10 ms 644 KB Correct
42 Correct 9 ms 772 KB Correct
43 Correct 9 ms 772 KB Correct
44 Partially correct 11 ms 876 KB Wrong
45 Correct 9 ms 644 KB Correct
46 Correct 9 ms 1008 KB Correct
47 Partially correct 10 ms 772 KB Wrong
48 Correct 10 ms 784 KB Correct
49 Correct 10 ms 780 KB Correct
50 Partially correct 9 ms 884 KB Wrong
51 Partially correct 9 ms 772 KB Wrong
52 Partially correct 9 ms 908 KB Wrong
53 Partially correct 10 ms 696 KB Wrong
54 Partially correct 9 ms 772 KB Wrong
55 Partially correct 10 ms 780 KB Wrong
56 Partially correct 10 ms 772 KB Wrong
57 Partially correct 10 ms 780 KB Wrong
58 Partially correct 10 ms 780 KB Wrong
59 Partially correct 10 ms 772 KB Wrong
60 Partially correct 10 ms 908 KB Wrong
61 Partially correct 10 ms 772 KB Wrong
62 Partially correct 10 ms 884 KB Wrong
63 Partially correct 10 ms 772 KB Wrong
64 Partially correct 9 ms 644 KB Wrong
65 Partially correct 10 ms 908 KB Wrong
66 Partially correct 10 ms 908 KB Wrong
67 Partially correct 10 ms 780 KB Wrong
68 Partially correct 10 ms 772 KB Wrong
69 Partially correct 11 ms 772 KB Wrong
70 Partially correct 11 ms 772 KB Wrong
71 Partially correct 11 ms 772 KB Wrong
72 Partially correct 10 ms 884 KB Wrong
73 Partially correct 11 ms 772 KB Wrong
74 Partially correct 10 ms 884 KB Wrong
75 Partially correct 10 ms 772 KB Wrong
76 Correct 10 ms 788 KB Correct
77 Correct 10 ms 772 KB Correct
78 Correct 9 ms 772 KB Correct
79 Partially correct 10 ms 772 KB Wrong
80 Partially correct 10 ms 772 KB Wrong
81 Partially correct 10 ms 908 KB Wrong
82 Partially correct 9 ms 772 KB Wrong
83 Partially correct 9 ms 772 KB Wrong
84 Partially correct 9 ms 772 KB Wrong
85 Partially correct 10 ms 908 KB Wrong
86 Partially correct 10 ms 924 KB Wrong
87 Correct 10 ms 732 KB Correct
88 Correct 11 ms 888 KB Correct
89 Correct 9 ms 784 KB Correct
90 Correct 9 ms 908 KB Correct
91 Partially correct 9 ms 912 KB Wrong
92 Partially correct 10 ms 644 KB Wrong
93 Partially correct 9 ms 772 KB Wrong
94 Partially correct 10 ms 908 KB Wrong
95 Partially correct 10 ms 776 KB Wrong
96 Partially correct 11 ms 780 KB Wrong
97 Partially correct 10 ms 772 KB Wrong
98 Partially correct 10 ms 644 KB Wrong
99 Partially correct 10 ms 772 KB Wrong
100 Partially correct 10 ms 644 KB Wrong
101 Partially correct 10 ms 908 KB Wrong
102 Correct 11 ms 1012 KB Correct
103 Correct 9 ms 1016 KB Correct
104 Correct 11 ms 772 KB Correct
105 Correct 10 ms 884 KB Correct
106 Partially correct 10 ms 908 KB Wrong
107 Partially correct 10 ms 1016 KB Wrong
108 Partially correct 11 ms 892 KB Wrong
109 Partially correct 9 ms 888 KB Wrong
110 Partially correct 10 ms 1020 KB Wrong
111 Partially correct 10 ms 772 KB Wrong
112 Partially correct 10 ms 780 KB Wrong
113 Partially correct 10 ms 772 KB Wrong
114 Partially correct 10 ms 984 KB Wrong
115 Partially correct 9 ms 772 KB Wrong
116 Partially correct 10 ms 804 KB Wrong
117 Partially correct 9 ms 908 KB Wrong
118 Partially correct 10 ms 972 KB Wrong
119 Partially correct 10 ms 772 KB Wrong
120 Partially correct 9 ms 772 KB Wrong