#include<cstdio>
#include<cstdlib>
#include<iostream>
#include<vector>
#include<queue>
#include<bitset>
#include<string>
#include<stack>
#include<set>
#include<unordered_set>
#include<map>
#include<unordered_map>
#include<cstring>
#include<complex>
#include<cmath>
#include<iomanip>
#include<numeric>
#include<algorithm>
#include<list>
#include<functional>
#include<cassert>
#define mp make_pair
#define pb push_back
#define X first
#define Y second
#define y0 y12
#define y1 y22
#define INF 987654321
#define PI 3.141592653589793238462643383279502884
#define fup(i,a,b,c) for(int (i)=(a);(i)<=(b);(i)+=(c))
#define fdn(i,a,b,c) for(int (i)=(a);(i)>=(b);(i)-=(c))
#define MEM0(a) memset((a),0,sizeof(a));
#define MEM_1(a) memset((a),-1,sizeof(a));
#define ALL(a) a.begin(),a.end()
#define SYNC ios_base::sync_with_stdio(false);cin.tie(0)
using namespace std;
typedef long long ll;
typedef long double ld;
typedef double db;
typedef unsigned int uint;
typedef unsigned long long ull;
typedef pair<int, int> Pi;
typedef pair<ll, ll> Pll;
typedef pair<ld, ld> Pd;
typedef vector<int> Vi;
typedef vector<ll> Vll;
typedef vector<double> Vd;
typedef vector<Pi> VPi;
typedef vector<Pll> VPll;
typedef vector<Pd> VPd;
typedef tuple<int, int, int> iii;
typedef tuple<int,int,int,int> iiii;
typedef tuple<ll, ll, ll> LLL;
typedef vector<iii> Viii;
typedef vector<LLL> VLLL;
typedef complex<double> base;
const ll MOD = 1000000007;
ll POW(ll a, ll b, ll MMM = MOD) {ll ret=1; for(;b;b>>=1,a=(a*a)%MMM)if(b&1)ret=(ret*a)% MMM; return ret; }
ll gcd(ll a, ll b) { return b ? gcd(b, a%b) : a; }
ll lcm(ll a, ll b) { if (a == 0 || b == 0)return a + b; return a*(b / gcd(a, b)); }
int dx[] = { 0,1,0,-1,1,1,-1,-1 }, dy[] = { 1,0,-1,0,1,-1,1,-1 };
int tree[524288];
void upd(int node, int S, int E, int k, int dif)
{
tree[node] += dif;
if (S == E)return;
if (k <= (S + E) / 2)upd(node * 2, S, (S + E) / 2, k, dif);
else upd(node * 2 + 1, (S + E) / 2 + 1, E, k, dif);
}
int findK(int node, int S, int E, int k)
{
if (S == E)return S;
if (k <= tree[node * 2+1])return findK(node * 2+1, (S+E)/2+1, E, k);
return findK(node * 2, S,(S+E)/2, k - tree[node * 2+1]);
}
ll SelectCross (int K, Vi I, Vi O)
{
VPi v;
Vi vv;
int n=I.size();
fup(i,0,n-1,1)vv.pb(O[i]);
sort(ALL(vv));
vv.resize(unique(ALL(vv))-vv.begin());
int N=vv.size();
fup(i,0,n-1,1)
{
O[i]=lower_bound(ALL(vv),O[i])-vv.begin();
v.pb(mp(I[i],O[i]));
}
sort(v.rbegin(),v.rend());
fup(i,0,K-2,1)
{
upd(1,0,N-1,v[i].Y,1);
}
ll ans=0;
fup(i,K-1,n-1,1)
{
upd(1,0,N-1,v[i].Y,1);
int t=vv[findK(1,0,N-1,K)];
ans=max(ans,1LL*v[i].X*(2*t-v[i].X));
}
return ans;
}
# |
결과 |
실행 시간 |
메모리 |
Grader output |
1 |
Correct |
6 ms |
384 KB |
Output is correct |
2 |
Correct |
5 ms |
384 KB |
Output is correct |
3 |
Correct |
6 ms |
384 KB |
Output is correct |
4 |
Correct |
6 ms |
384 KB |
Output is correct |
5 |
Correct |
17 ms |
1024 KB |
Output is correct |
6 |
Correct |
195 ms |
8040 KB |
Output is correct |
7 |
Correct |
200 ms |
8024 KB |
Output is correct |
8 |
Correct |
194 ms |
8024 KB |
Output is correct |
# |
결과 |
실행 시간 |
메모리 |
Grader output |
1 |
Correct |
6 ms |
384 KB |
Output is correct |
2 |
Correct |
5 ms |
384 KB |
Output is correct |
3 |
Correct |
6 ms |
384 KB |
Output is correct |
4 |
Correct |
6 ms |
384 KB |
Output is correct |
5 |
Correct |
17 ms |
1024 KB |
Output is correct |
6 |
Correct |
195 ms |
8040 KB |
Output is correct |
7 |
Correct |
200 ms |
8024 KB |
Output is correct |
8 |
Correct |
194 ms |
8024 KB |
Output is correct |
9 |
Correct |
6 ms |
384 KB |
Output is correct |
10 |
Correct |
6 ms |
384 KB |
Output is correct |
11 |
Correct |
6 ms |
384 KB |
Output is correct |
12 |
Correct |
17 ms |
1024 KB |
Output is correct |
13 |
Correct |
102 ms |
4320 KB |
Output is correct |
14 |
Correct |
218 ms |
8040 KB |
Output is correct |
15 |
Correct |
216 ms |
8040 KB |
Output is correct |
16 |
Correct |
200 ms |
8036 KB |
Output is correct |
# |
결과 |
실행 시간 |
메모리 |
Grader output |
1 |
Correct |
6 ms |
384 KB |
Output is correct |
2 |
Correct |
5 ms |
384 KB |
Output is correct |
3 |
Correct |
6 ms |
384 KB |
Output is correct |
4 |
Correct |
6 ms |
384 KB |
Output is correct |
5 |
Correct |
17 ms |
1024 KB |
Output is correct |
6 |
Correct |
195 ms |
8040 KB |
Output is correct |
7 |
Correct |
200 ms |
8024 KB |
Output is correct |
8 |
Correct |
194 ms |
8024 KB |
Output is correct |
9 |
Correct |
6 ms |
384 KB |
Output is correct |
10 |
Correct |
6 ms |
384 KB |
Output is correct |
11 |
Correct |
6 ms |
384 KB |
Output is correct |
12 |
Correct |
17 ms |
1024 KB |
Output is correct |
13 |
Correct |
102 ms |
4320 KB |
Output is correct |
14 |
Correct |
218 ms |
8040 KB |
Output is correct |
15 |
Correct |
216 ms |
8040 KB |
Output is correct |
16 |
Correct |
200 ms |
8036 KB |
Output is correct |
17 |
Correct |
7 ms |
384 KB |
Output is correct |
18 |
Correct |
8 ms |
384 KB |
Output is correct |
19 |
Correct |
18 ms |
896 KB |
Output is correct |
20 |
Correct |
104 ms |
4332 KB |
Output is correct |
21 |
Correct |
151 ms |
6872 KB |
Output is correct |
22 |
Correct |
200 ms |
8076 KB |
Output is correct |
23 |
Correct |
191 ms |
7900 KB |
Output is correct |
24 |
Correct |
205 ms |
8040 KB |
Output is correct |
25 |
Correct |
206 ms |
8024 KB |
Output is correct |
26 |
Correct |
212 ms |
8036 KB |
Output is correct |