Submission #144410

# Submission time Handle Problem Language Result Execution time Memory
144410 2019-08-16T20:24:35 Z xiaowuc1 Split the Attractions (IOI19_split) C++14
11 / 100
127 ms 13944 KB
#include <bits/stdc++.h>

using namespace std;

typedef pair<int, int> pii;

vector<int> edges[100005];

int ufpar[100005];
int ufsz[100005];

int find(int x) {
  return ufpar[x] == x ? x : (ufpar[x] = find(ufpar[x]));
}
bool merge(int x, int y) {
  x = find(x);
  y = find(y);
  if(x == y) return false;
  if(ufsz[x] < ufsz[y]) swap(x, y);
  ufsz[x] += ufsz[y];
  ufpar[y] = x;
  return true;
}

// spanning tree is rooted at 0
int treeSize[100005];
int dfsParent[100005];
bool dfsSeen[100005];
int assignedColor[100005];
int ret[100005];

bool ufcolor(int curr, int need, int want) {
  ret[curr] = want;
  if(--need == 0) return true;
  queue<int> q;
  q.push(curr);
  while(!q.empty()) {
    curr = q.front(); q.pop();
    for(int out: edges[curr]) {
      if(find(out) != find(curr)) continue;
      if(ret[out]) continue;
      ret[out] = want;
      if(--need == 0) return true;
      q.push(out);
    }
  }
  return false;
}

vector<int> consolidate(int n) {
  vector<int> ans;
  map<int, int> dp;
  for(int i = 0; i < n; i++) {
    assert(ret[i] >= 1 && ret[i] <= 3);
    ans.push_back(ret[i]);
    dp[ret[i]]++;
  }
  return ans;
}

void downColor(int curr, int par, int& need, int want) {
  ret[curr] = want;
  assert(need > 0);
  if(--need == 0) return;
  for(int out: edges[curr]) {
    if(need == 0) break;
    if(dfsParent[out] != curr && dfsParent[curr] != out) continue;
    if(ret[curr]) continue;
    downColor(out, curr, need, want);
  }
}

bool upColor(int curr, int need, int want) {
  queue<int> q;
  q.push(curr);
  ret[curr] = want;
  if(--need == 0) return true;
  while(!q.empty()) {
    curr = q.front(); q.pop();
    for(int out: edges[curr]) {
      if(ret[out]) continue;
      ret[out] = want;
      if(--need == 0) return true;
      q.push(out);
    }
  }
  return false;
}

void fillRest(int n, int want) {
  for(int i = 0; i < n; i++) {
    if(ret[i] == 0) ret[i] = want;
  }
}

void dfs(int curr, int par) {
  treeSize[curr] = 1;
  dfsSeen[curr] = true;
  dfsParent[curr] = par;
  for(int out: edges[curr]) {
    if(dfsSeen[out]) continue;
    dfs(out, curr);
    treeSize[curr] += treeSize[out];
  }
}

vector<int> find_split(int n, int a, int b, int c, vector<int> p, vector<int> q) {
  for(int i = 0; i < p.size(); i++) {
    edges[p[i]].push_back(q[i]);
    edges[q[i]].push_back(p[i]);
  }
  dfs(0, -1);
  vector<pii> sizes;
  sizes.emplace_back(a, 1);
  sizes.emplace_back(b, 2);
  sizes.emplace_back(c, 3);
  sort(sizes.begin(), sizes.end());
  // is there a subtree such that it can be colored with size a and the other half can be colored with size b
  for(int i = 1; i < n; i++) {
    if(treeSize[i] >= sizes[0].first && n-treeSize[i] >= sizes[1].first) {
      downColor(i, dfsParent[i], sizes[0].first, sizes[0].second);
      assert(upColor(dfsParent[i], sizes[1].first, sizes[1].second));
      fillRest(n, sizes[2].second);
      return consolidate(n);
    }
    if(treeSize[i] >= sizes[1].first && n-treeSize[i] >= sizes[0].first) {
      downColor(dfsParent[i], i, sizes[0].first, sizes[0].second);
      assert(upColor(i, sizes[1].first, sizes[1].second));
      fillRest(n, sizes[2].second);
      return consolidate(n);
    }
  }
  // find a node such that, when deleted, all trees have size < a
  int critical = -1;
  for(int i = 0; i < n; i++) {
    int largestTree = 0;
    int parentSize = n-1;
    for(int out: edges[i]) {
      if(dfsParent[out] != i) continue;
      largestTree = max(largestTree, treeSize[out]);
      parentSize -= treeSize[out];
    }
    largestTree = max(largestTree, parentSize);
    if(largestTree >= sizes[0].first) continue;
    critical = i;
    break;
  }
  assert(critical != -1);
  for(int i = 0; i < n; i++) {
    ufpar[i] = i;
    ufsz[i] = 1;
  }
  for(int i = 1; i < n; i++) {
    if(i == critical || dfsParent[i] == critical) continue;
    assert(merge(i, dfsParent[i]));
    assert(ufsz[find(i)] < sizes[0].first);
  }
  for(int i = 0; i < n; i++) {
    for(int out: edges[i]) {
      if(i == critical || out == critical) continue;
      if(!merge(i, out)) continue;
      if(ufsz[find(i)] >= sizes[0].first) {
        ufcolor(i, sizes[0].first, sizes[0].second);
        assert(upColor(critical, sizes[1].first, sizes[1].second));
        fillRest(n, sizes[2].second);
        return consolidate(n);
      }
    }
  }
  vector<int> ans;
  ans.resize(n);
  return ans;
}

Compilation message

split.cpp: In function 'std::vector<int> find_split(int, int, int, int, std::vector<int>, std::vector<int>)':
split.cpp:108:20: warning: comparison between signed and unsigned integer expressions [-Wsign-compare]
   for(int i = 0; i < p.size(); i++) {
                  ~~^~~~~~~~~~
# Verdict Execution time Memory Grader output
1 Correct 4 ms 2680 KB ok, correct split
2 Correct 4 ms 2680 KB ok, correct split
3 Correct 4 ms 2680 KB ok, correct split
4 Correct 4 ms 2680 KB ok, correct split
5 Correct 4 ms 2680 KB ok, correct split
6 Incorrect 5 ms 2680 KB invalid split: #1=40, #2=1, #3=59
7 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Correct 5 ms 2680 KB ok, correct split
2 Correct 4 ms 2680 KB ok, correct split
3 Correct 4 ms 2680 KB ok, correct split
4 Correct 112 ms 12536 KB ok, correct split
5 Correct 80 ms 9464 KB ok, correct split
6 Correct 85 ms 13944 KB ok, correct split
7 Correct 95 ms 12304 KB ok, correct split
8 Correct 127 ms 11684 KB ok, correct split
9 Correct 84 ms 9332 KB ok, correct split
10 Correct 63 ms 9840 KB ok, correct split
11 Correct 63 ms 9772 KB ok, correct split
12 Correct 68 ms 9840 KB ok, correct split
# Verdict Execution time Memory Grader output
1 Correct 4 ms 2680 KB ok, correct split
2 Incorrect 84 ms 9436 KB invalid split: #1=1, #2=40000, #3=59999
3 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Incorrect 4 ms 2680 KB invalid split: #1=5, #2=1, #3=3
2 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Correct 4 ms 2680 KB ok, correct split
2 Correct 4 ms 2680 KB ok, correct split
3 Correct 4 ms 2680 KB ok, correct split
4 Correct 4 ms 2680 KB ok, correct split
5 Correct 4 ms 2680 KB ok, correct split
6 Incorrect 5 ms 2680 KB invalid split: #1=40, #2=1, #3=59
7 Halted 0 ms 0 KB -