Submission #137495

#TimeUsernameProblemLanguageResultExecution timeMemory
137495gs14004Jump (BOI06_jump)C++17
100 / 100
8 ms1144 KiB
#include <cstdio> #include <cstring> /* * InfInt - Arbitrary-Precision Integer Arithmetic Library * Copyright (C) 2013 Sercan Tutar * * This library is free software; you can redistribute it and/or modify it under * the terms of the GNU Lesser General Public License as published by the Free * Software Foundation; either version 2.1 of the License, or (at your option) * any later version. * * This library is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS * FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more * details. * * You should have received a copy of the GNU Lesser General Public License * along with this library; if not, write to the Free Software Foundation, Inc., * 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA * * * USAGE: * It is pretty straight forward to use the library. Just create an instance of * InfInt class and start using it. * * Useful methods: * intSqrt: integer square root operation * digitAt: returns digit at index * numberOfDigits: returns number of digits * size: returns size in bytes * toString: converts it to a string * * There are also conversion methods which allow conversion to primitive types: * toInt, toLong, toLongLong, toUnsignedInt, toUnsignedLong, toUnsignedLongLong. * * You may define INFINT_USE_EXCEPTIONS and library methods will start raising * InfIntException in case of error instead of writing error messages using * std::cerr. * * See ReadMe.txt for more info. * * * No overflows, happy programmers! * */ #ifndef INFINT_H_ #define INFINT_H_ #include <iostream> #include <vector> #include <sstream> #include <iomanip> #include <limits.h> #include <stdlib.h> //#include "Profiler.h" #ifdef _WIN32 #define LONG_LONG_MIN LLONG_MIN #define LONG_LONG_MAX LLONG_MAX #define ULONG_LONG_MIN ULLONG_MIN #define ULONG_LONG_MAX ULLONG_MAX #endif //#define INFINT_USE_EXCEPTIONS //#define INFINT_USE_SHORT_BASE #ifdef INFINT_USE_EXCEPTIONS #include <exception> #endif //inline bool check_pos(int n) //{ // return n >= 0; //} //inline bool check_neg(int n) //{ // return n <= 0; //} #ifdef INFINT_USE_SHORT_BASE // uses 10^4 (short) as the base typedef short ELEM_TYPE; typedef int PRODUCT_TYPE; static const ELEM_TYPE BASE = 10000; static const ELEM_TYPE UPPER_BOUND = 9999; static const ELEM_TYPE DIGIT_COUNT = 4; static const int powersOfTen[] = { 1, 10, 100, 1000}; #else // uses 10^9 (int) as the base typedef int ELEM_TYPE; typedef long long PRODUCT_TYPE; static const ELEM_TYPE BASE = 1000000000; static const ELEM_TYPE UPPER_BOUND = 999999999; static const ELEM_TYPE DIGIT_COUNT = 9; static const int powersOfTen[] = { 1, 10, 100, 1000, 10000, 100000, 1000000, 10000000, 100000000 }; #endif #ifdef INFINT_USE_EXCEPTIONS class InfIntException: public std::exception { public: InfIntException(const std::string& txt) throw (); ~InfIntException() throw (); const char* what() const throw (); private: std::string txt; }; InfIntException::InfIntException(const std::string& txt) throw () : std::exception(), txt(txt) { } InfIntException::~InfIntException() throw () { } const char* InfIntException::what() const throw () { return txt.c_str(); } #endif class InfInt { friend std::ostream& operator<<(std::ostream &s, const InfInt &n); friend std::istream& operator>>(std::istream &s, InfInt &val); public: /* some constants */ static const InfInt zero; static const InfInt one; static const InfInt two; /* constructors */ InfInt(); InfInt(const char* c); InfInt(const std::string& s); InfInt(int l); InfInt(long l); InfInt(long long l); InfInt(unsigned int l); InfInt(unsigned long l); InfInt(unsigned long long l); /* assignment operators */ const InfInt& operator=(const char* c); const InfInt& operator=(const std::string& s); const InfInt& operator=(int l); const InfInt& operator=(long l); const InfInt& operator=(long long l); const InfInt& operator=(unsigned int l); const InfInt& operator=(unsigned long l); const InfInt& operator=(unsigned long long l); /* unary increment/decrement operators */ const InfInt& operator++(); const InfInt& operator--(); InfInt operator++(int); InfInt operator--(int); /* operational assignments */ const InfInt& operator+=(const InfInt& rhs); const InfInt& operator-=(const InfInt& rhs); const InfInt& operator*=(const InfInt& rhs); const InfInt& operator/=(const InfInt& rhs); // throw const InfInt& operator%=(const InfInt& rhs); // throw const InfInt& operator*=(ELEM_TYPE rhs); /* operations */ InfInt operator-() const; InfInt operator+(const InfInt& rhs) const; InfInt operator-(const InfInt& rhs) const; InfInt operator*(const InfInt& rhs) const; InfInt operator/(const InfInt& rhs) const; // throw InfInt operator%(const InfInt& rhs) const; // throw InfInt operator*(ELEM_TYPE rhs) const; /* relational operations */ bool operator==(const InfInt& rhs) const; bool operator!=(const InfInt& rhs) const; bool operator<(const InfInt& rhs) const; bool operator<=(const InfInt& rhs) const; bool operator>(const InfInt& rhs) const; bool operator>=(const InfInt& rhs) const; /* integer square root */ InfInt intSqrt() const; // throw /* digit operations */ char digitAt(size_t i) const; // throw size_t numberOfDigits() const; /* size in bytes */ size_t size() const; /* string conversion */ std::string toString() const; /* conversion to primitive types */ int toInt() const; // throw long toLong() const; // throw long long toLongLong() const; // throw unsigned int toUnsignedInt() const; // throw unsigned long toUnsignedLong() const; // throw unsigned long long toUnsignedLongLong() const; // throw private: static ELEM_TYPE dInR(const InfInt& R, const InfInt& D); static void multiplyByDigit(ELEM_TYPE factor, std::vector<ELEM_TYPE>& val); void correct(bool justCheckLeadingZeros = false, bool hasValidSign = false); void fromString(const std::string& s); void optimizeSqrtSearchBounds(InfInt& lo, InfInt& hi) const; void truncateToBase(); bool equalizeSigns(); void removeLeadingZeros(); std::vector<ELEM_TYPE> val; // number with base FACTOR bool pos; // true if number is positive }; const InfInt InfInt::zero = 0; const InfInt InfInt::one = 1; const InfInt InfInt::two = 2; inline InfInt::InfInt() : pos(true) { val.push_back((ELEM_TYPE) 0); } inline InfInt::InfInt(const char* c) { fromString(c); } inline InfInt::InfInt(const std::string& s) { fromString(s); } inline InfInt::InfInt(int l) : pos(l >= 0) { if (!pos) { l = -l; } do { div_t dt = div(l, BASE); val.push_back((ELEM_TYPE) dt.rem); l = dt.quot; } while (l > 0); } inline InfInt::InfInt(long l) : pos(l >= 0) { if (!pos) { l = -l; } do { ldiv_t dt = ldiv(l, BASE); val.push_back((ELEM_TYPE) dt.rem); l = dt.quot; } while (l > 0); } inline InfInt::InfInt(long long l) : pos(l >= 0) { if (!pos) { l = -l; } do { #ifndef _WIN32 lldiv_t dt = lldiv(l, BASE); val.push_back((ELEM_TYPE) dt.rem); l = dt.quot; #else val.push_back((ELEM_TYPE) (l % BASE)); l = l / BASE; #endif } while (l > 0); } inline InfInt::InfInt(unsigned int l) : pos(true) { do { val.push_back((ELEM_TYPE) (l % BASE)); l = l / BASE; } while (l > 0); } inline InfInt::InfInt(unsigned long l) : pos(true) { do { val.push_back((ELEM_TYPE) (l % BASE)); l = l / BASE; } while (l > 0); } inline InfInt::InfInt(unsigned long long l) : pos(true) { do { val.push_back((ELEM_TYPE) (l % BASE)); l = l / BASE; } while (l > 0); } inline const InfInt& InfInt::operator=(const char* c) { fromString(c); return *this; } inline const InfInt& InfInt::operator=(const std::string& s) { fromString(s); return *this; } inline const InfInt& InfInt::operator=(int l) { pos = l >= 0; val.clear(); if (!pos) { l = -l; } do { div_t dt = div(l, BASE); val.push_back((ELEM_TYPE) dt.rem); l = dt.quot; } while (l > 0); return *this; } inline const InfInt& InfInt::operator=(long l) { pos = l >= 0; val.clear(); if (!pos) { l = -l; } do { ldiv_t dt = ldiv(l, BASE); val.push_back((ELEM_TYPE) dt.rem); l = dt.quot; } while (l > 0); return *this; } inline const InfInt& InfInt::operator=(long long l) { pos = l >= 0; val.clear(); if (!pos) { l = -l; } do { #ifndef _WIN32 lldiv_t dt = lldiv(l, BASE); val.push_back((ELEM_TYPE) dt.rem); l = dt.quot; #else val.push_back((ELEM_TYPE) (l % BASE)); l = l / BASE; #endif } while (l > 0); return *this; } inline const InfInt& InfInt::operator=(unsigned int l) { pos = true; val.clear(); do { val.push_back((ELEM_TYPE) (l % BASE)); l = l / BASE; } while (l > 0); return *this; } inline const InfInt& InfInt::operator=(unsigned long l) { pos = true; val.clear(); do { val.push_back((ELEM_TYPE) (l % BASE)); l = l / BASE; } while (l > 0); return *this; } inline const InfInt& InfInt::operator=(unsigned long long l) { pos = true; val.clear(); do { val.push_back((ELEM_TYPE) (l % BASE)); l = l / BASE; } while (l > 0); return *this; } inline const InfInt& InfInt::operator++() { val[0] += (pos ? 1 : -1); this->correct(false, true); return *this; } inline const InfInt& InfInt::operator--() { val[0] -= (pos ? 1 : -1); this->correct(false, true); return *this; } inline InfInt InfInt::operator++(int) { InfInt result = *this; val[0] += (pos ? 1 : -1); this->correct(false, true); return result; } inline InfInt InfInt::operator--(int) { InfInt result = *this; val[0] -= (pos ? 1 : -1); this->correct(false, true); return result; } inline const InfInt& InfInt::operator+=(const InfInt& rhs) { if (rhs.val.size() > val.size()) { val.resize(rhs.val.size(), 0); } for (size_t i = 0; i < val.size(); ++i) { val[i] = (pos ? val[i] : -val[i]) + (i < rhs.val.size() ? (rhs.pos ? rhs.val[i] : -rhs.val[i]) : 0); } correct(); return *this; } inline const InfInt& InfInt::operator-=(const InfInt& rhs) { if (rhs.val.size() > val.size()) { val.resize(rhs.val.size(), 0); } for (size_t i = 0; i < val.size(); ++i) { val[i] = (pos ? val[i] : -val[i]) - (i < rhs.val.size() ? (rhs.pos ? rhs.val[i] : -rhs.val[i]) : 0); } correct(); return *this; } inline const InfInt& InfInt::operator*=(const InfInt& rhs) { // TODO: optimize (do not use operator*) *this = *this * rhs; return *this; } inline const InfInt& InfInt::operator/=(const InfInt& rhs) { if (rhs == zero) { #ifdef INFINT_USE_EXCEPTIONS throw InfIntException("division by zero"); #else std::cerr << "Division by zero!" << std::endl; return *this; #endif } InfInt R, D = (rhs.pos ? rhs : -rhs), N = (pos ? *this : -*this); bool oldpos = pos; val.clear(); val.resize(N.val.size(), 0); for (int i = (int) N.val.size() - 1; i >= 0; --i) { R.val.insert(R.val.begin(), (ELEM_TYPE) 0); R.val[0] = N.val[i]; R.correct(true); ELEM_TYPE cnt = dInR(R, D); R -= D * cnt; val[i] += cnt; } correct(); pos = (val.size() == 1 && val[0] == 0) ? true : (oldpos == rhs.pos); return *this; } inline const InfInt& InfInt::operator%=(const InfInt& rhs) { if (rhs == zero) { #ifdef INFINT_USE_EXCEPTIONS throw InfIntException("division by zero"); #else std::cerr << "Division by zero!" << std::endl; return zero; #endif } InfInt D = (rhs.pos ? rhs : -rhs), N = (pos ? *this : -*this); bool oldpos = pos; val.clear(); for (int i = (int) N.val.size() - 1; i >= 0; --i) { val.insert(val.begin(), (ELEM_TYPE) 0); val[0] = N.val[i]; correct(true); *this -= D * dInR(*this, D); } correct(); pos = (val.size() == 1 && val[0] == 0) ? true : oldpos; return *this; } inline const InfInt& InfInt::operator*=(ELEM_TYPE rhs) { ELEM_TYPE factor = rhs < 0 ? -rhs : rhs; bool oldpos = pos; multiplyByDigit(factor, val); correct(); pos = (val.size() == 1 && val[0] == 0) ? true : (oldpos == (rhs >= 0)); return *this; } inline InfInt InfInt::operator-() const {//PROFILED_SCOPE InfInt result = *this; result.pos = !pos; return result; } inline InfInt InfInt::operator+(const InfInt& rhs) const {//PROFILED_SCOPE InfInt result; result.val.resize(val.size() > rhs.val.size() ? val.size() : rhs.val.size(), 0); for (size_t i = 0; i < val.size() || i < rhs.val.size(); ++i) { result.val[i] = (i < val.size() ? (pos ? val[i] : -val[i]) : 0) + (i < rhs.val.size() ? (rhs.pos ? rhs.val[i] : -rhs.val[i]) : 0); } result.correct(); return result; } inline InfInt InfInt::operator-(const InfInt& rhs) const {//PROFILED_SCOPE InfInt result; result.val.resize(val.size() > rhs.val.size() ? val.size() : rhs.val.size(), 0); for (size_t i = 0; i < val.size() || i < rhs.val.size(); ++i) { result.val[i] = (i < val.size() ? (pos ? val[i] : -val[i]) : 0) - (i < rhs.val.size() ? (rhs.pos ? rhs.val[i] : -rhs.val[i]) : 0); } result.correct(); return result; } inline InfInt InfInt::operator*(const InfInt& rhs) const {//PROFILED_SCOPE InfInt result; result.val.resize(val.size() + rhs.val.size(), 0); PRODUCT_TYPE carry = 0; size_t digit = 0; for (;; ++digit) {//PROFILED_SCOPE //result.val[digit] = (ELEM_TYPE) (carry % BASE); //carry /= BASE; PRODUCT_TYPE oldcarry = carry; carry /= BASE; result.val[digit] = (ELEM_TYPE) (oldcarry - carry * BASE); bool found = false; for (size_t i = digit < rhs.val.size() ? 0 : digit - rhs.val.size() + 1; i < val.size() && i <= digit; ++i) {//PROFILED_SCOPE PRODUCT_TYPE pval = result.val[digit] + val[i] * (PRODUCT_TYPE) rhs.val[digit - i]; if (pval >= BASE || pval <= -BASE) {//PROFILED_SCOPE //carry += pval / BASE; //pval %= BASE; PRODUCT_TYPE quot = pval / BASE; carry += quot; pval -= quot * BASE; } result.val[digit] = (ELEM_TYPE) pval; found = true; } if (!found) {//PROFILED_SCOPE break; } } for (; carry > 0; ++digit) {//PROFILED_SCOPE result.val[digit] = (ELEM_TYPE) (carry % BASE); carry /= BASE; } result.correct(); result.pos = (result.val.size() == 1 && result.val[0] == 0) ? true : (pos == rhs.pos); return result; } inline InfInt InfInt::operator/(const InfInt& rhs) const {//PROFILED_SCOPE if (rhs == zero) { #ifdef INFINT_USE_EXCEPTIONS throw InfIntException("division by zero"); #else std::cerr << "Division by zero!" << std::endl; return zero; #endif } InfInt Q, R, D = (rhs.pos ? rhs : -rhs), N = (pos ? *this : -*this); Q.val.resize(N.val.size(), 0); for (int i = (int) N.val.size() - 1; i >= 0; --i) {//PROFILED_SCOPE R.val.insert(R.val.begin(), (ELEM_TYPE) 0); R.val[0] = N.val[i]; R.correct(true); ELEM_TYPE cnt = dInR(R, D); R -= D * cnt; Q.val[i] += cnt; } Q.correct(); Q.pos = (Q.val.size() == 1 && Q.val[0] == 0) ? true : (pos == rhs.pos); return Q; } inline InfInt InfInt::operator%(const InfInt& rhs) const {//PROFILED_SCOPE if (rhs == zero) { #ifdef INFINT_USE_EXCEPTIONS throw InfIntException("division by zero"); #else std::cerr << "Division by zero!" << std::endl; return zero; #endif } InfInt R, D = (rhs.pos ? rhs : -rhs), N = (pos ? *this : -*this); for (int i = (int) N.val.size() - 1; i >= 0; --i) { R.val.insert(R.val.begin(), (ELEM_TYPE) 0); R.val[0] = N.val[i]; R.correct(true); R -= D * dInR(R, D); } R.correct(); R.pos = (R.val.size() == 1 && R.val[0] == 0) ? true : pos; return R; } inline InfInt InfInt::operator*(ELEM_TYPE rhs) const {//PROFILED_SCOPE InfInt result = *this; ELEM_TYPE factor = rhs < 0 ? -rhs : rhs; multiplyByDigit(factor, result.val); result.correct(); result.pos = (result.val.size() == 1 && result.val[0] == 0) ? true : (pos == (rhs >= 0)); return result; } inline bool InfInt::operator==(const InfInt& rhs) const {//PROFILED_SCOPE if (pos != rhs.pos || val.size() != rhs.val.size()) { return false; } for (int i = (int) val.size() - 1; i >= 0; --i) { if (val[i] != rhs.val[i]) { return false; } } return true; } inline void InfInt::truncateToBase() {//PROFILED_SCOPE for (size_t i = 0; i < val.size(); ++i) // truncate each { if (val[i] >= BASE || val[i] <= -BASE) {//PROFILED_SCOPE div_t dt = div(val[i], BASE); val[i] = dt.rem; if (i + 1 >= val.size()) {//PROFILED_SCOPE val.push_back(dt.quot); } else {//PROFILED_SCOPE val[i + 1] += dt.quot; } } } } inline bool InfInt::equalizeSigns() {//PROFILED_SCOPE bool isPositive = true; int i = (int) ((val.size())) - 1; for (; i >= 0; --i) { if (val[i] != 0) { isPositive = val[i--] > 0; break; } } if (isPositive) { for (; i >= 0; --i) { if (val[i] < 0) { int k = 0, index = i + 1; for (; (size_t)(index) < val.size() && val[index] == 0; ++k, ++index); // count adjacent zeros on left //if ((size_t)(index) < val.size() && val[index] > 0) { // number on the left is positive val[index] -= 1; val[i] += BASE; for (; k > 0; --k) { val[i + k] = UPPER_BOUND; } } } } } else { for (; i >= 0; --i) { if (val[i] > 0) { int k = 0, index = i + 1; for (; (size_t)(index) < val.size() && val[index] == 0; ++k, ++index); // count adjacent zeros on right //if ((size_t)(index) < val.size() && val[index] < 0) { // number on the left is negative val[index] += 1; val[i] -= BASE; for (; k > 0; --k) { val[i + k] = -UPPER_BOUND; } } } } } return isPositive; } inline void InfInt::removeLeadingZeros() {//PROFILED_SCOPE for (int i = (int) (val.size()) - 1; i > 0; --i) // remove leading 0's { if (val[i] != 0) { return; } else { val.erase(val.begin() + i); } } } inline void InfInt::correct(bool justCheckLeadingZeros, bool hasValidSign) {//PROFILED_SCOPE if (!justCheckLeadingZeros) { truncateToBase(); if (equalizeSigns()) { pos = ((val.size() == 1 && val[0] == 0) || !hasValidSign) ? true : pos; } else { pos = hasValidSign ? !pos : false; for (size_t i = 0; i < val.size(); ++i) { val[i] = abs(val[i]); } } } removeLeadingZeros(); } inline void InfInt::fromString(const std::string& s) {//PROFILED_SCOPE pos = true; val.clear(); // TODO use resize val.reserve(s.size() / DIGIT_COUNT + 1); int i = (int) s.size() - DIGIT_COUNT; for (; i >= 0; i -= DIGIT_COUNT) { val.push_back(atoi(s.substr(i, DIGIT_COUNT).c_str())); } if (i > -DIGIT_COUNT) { std::string ss = s.substr(0, i + DIGIT_COUNT); if (ss.size() == 1 && ss[0] == '-') { pos = false; } else { val.push_back(atoi(ss.c_str())); } } if (val.back() < 0) { val.back() = -val.back(); pos = false; } correct(true); } inline ELEM_TYPE InfInt::dInR(const InfInt& R, const InfInt& D) {//PROFILED_SCOPE ELEM_TYPE min = 0, max = UPPER_BOUND; while (max - min > 0) { ELEM_TYPE avg = max + min; //div_t dt = div(avg, 2); //avg = dt.rem ? (dt.quot + 1) : dt.quot; ELEM_TYPE havg = avg / 2; avg = (avg - havg * 2) ? (havg + 1) : havg; InfInt prod = D * avg; if (R == prod) {//PROFILED_SCOPE return avg; } else if (R > prod) {//PROFILED_SCOPE min = avg; } else {//PROFILED_SCOPE max = avg - 1; } } return min; } inline void InfInt::multiplyByDigit(ELEM_TYPE factor, std::vector<ELEM_TYPE>& val) {//PROFILED_SCOPE ELEM_TYPE carry = 0; for (size_t i = 0; i < val.size(); ++i) { PRODUCT_TYPE pval = val[i] * (PRODUCT_TYPE) factor + carry; if (pval >= BASE || pval <= -BASE) { //carry = (ELEM_TYPE) (pval / BASE); //pval %= BASE; carry = (ELEM_TYPE) (pval / BASE); pval -= carry * BASE; } else { carry = 0; } val[i] = (ELEM_TYPE) pval; } if (carry > 0) { val.push_back(carry); } } /**************************************************************/ /******************** NON-MEMBER OPERATORS ********************/ /**************************************************************/ inline std::istream& operator>>(std::istream &s, InfInt &n) {//PROFILED_SCOPE std::string str; s >> str; n.fromString(str); return s; } inline std::ostream& operator<<(std::ostream &s, const InfInt &n) {//PROFILED_SCOPE if (!n.pos) { s << '-'; } bool first = true; for (int i = (int) n.val.size() - 1; i >= 0; --i) { if (first) { s << n.val[i]; first = false; } else { s << std::setfill('0') << std::setw(DIGIT_COUNT) << n.val[i]; } } return s; } #endif int a[101][101], n; InfInt dp[101][101]; int v[101][101]; InfInt f(int x, int y){ if(x == n-1 && y == n-1) return InfInt(1); if(a[x][y] == 0) return InfInt(0); if(v[x][y]) return dp[x][y]; if(x + a[x][y] < n) dp[x][y] = dp[x][y] + f(x + a[x][y],y); if(y + a[x][y] < n) dp[x][y] = dp[x][y] + f(x,y + a[x][y]); v[x][y] = 1; return dp[x][y]; } int main(){ scanf("%d",&n); for (int i=0; i<n; i++) { for (int j=0; j<n; j++) { scanf("%d",&a[i][j]); } } InfInt x = f(0,0); std::cout << x; }

Compilation message (stderr)

jump.cpp: In member function 'bool InfInt::equalizeSigns()':
jump.cpp:745:17: warning: this 'for' clause does not guard... [-Wmisleading-indentation]
                 for (; (size_t)(index) < val.size() && val[index] == 0; ++k, ++index); // count adjacent zeros on left
                 ^~~
jump.cpp:747:17: note: ...this statement, but the latter is misleadingly indented as if it were guarded by the 'for'
                 { // number on the left is positive
                 ^
jump.cpp:765:17: warning: this 'for' clause does not guard... [-Wmisleading-indentation]
                 for (; (size_t)(index) < val.size() && val[index] == 0; ++k, ++index); // count adjacent zeros on right
                 ^~~
jump.cpp:767:17: note: ...this statement, but the latter is misleadingly indented as if it were guarded by the 'for'
                 { // number on the left is negative
                 ^
jump.cpp: In function 'int main()':
jump.cpp:955:10: warning: ignoring return value of 'int scanf(const char*, ...)', declared with attribute warn_unused_result [-Wunused-result]
     scanf("%d",&n);
     ~~~~~^~~~~~~~~
jump.cpp:958:18: warning: ignoring return value of 'int scanf(const char*, ...)', declared with attribute warn_unused_result [-Wunused-result]
             scanf("%d",&a[i][j]);
             ~~~~~^~~~~~~~~~~~~~~
#Verdict Execution timeMemoryGrader output
Fetching results...