이 제출은 이전 버전의 oj.uz에서 채점하였습니다. 현재는 제출 당시와는 다른 서버에서 채점을 하기 때문에, 다시 제출하면 결과가 달라질 수도 있습니다.
// ItnoE
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
typedef double ld;
struct CHT
{
typedef pair < ld , ld > Line;
vector < pair < ld , pair < Line , ll > > > A;
ld INF = (ld)1e18;
inline void Clear()
{
A.clear();
}
inline void Add(Line X, ll id)
{
while (A.size() && Intersection(A.back().second.first, X) <= A.back().first)
A.pop_back();
if (A.size())
A.push_back({Intersection(A.back().second.first, X), {X, id}});
else
A.push_back({-INF, {X, id}});
}
inline pair < ld , ll > GetMax(ld X)
{
int lb = upper_bound(A.begin(), A.end(), pair < ld , pair < Line , ll > > {X, {{INF, INF}, -1}}) - A.begin() - 1;
return (make_pair(A[lb].second.first.first * X + A[lb].second.first.second, A[lb].second.second));
}
inline ld Intersection(Line X, Line Y)
{
if (X.first == Y.first && X.second <= Y.second)
return (-INF);
if (X.first == Y.first)
return (INF);
return ((X.second - Y.second) / (Y.first - X.first));// + ((X.second - Y.second) % (Y.first - X.first) > 0);
}
};
const int N = 100005, MXM = 1e6 + 10;
int n, m, A[N], B[N], F[N], MN[MXM];
pair < ld , ll > dp[N];
inline ld SQR(ld a) {return (a * a);}
inline pair < ld , ll > Solve(ld md)
{
CHT C;
dp[0] = {0, 0};
for (int i = 1; i <= n; i ++)
{
ld vl = dp[i - 1].first + SQR(F[i]);
if (i > 1 && B[i - 1] > F[i])
vl -= SQR(B[i - 1] - F[i]);
C.Add({F[i], - vl}, i);
auto tt = C.GetMax(2 * B[i]);
tt.first *= -1;
dp[i].first = tt.first + SQR(B[i]) + md;
dp[i].second = dp[tt.second - 1].second + 1;
}
return (dp[n]);
}
int64_t take_photos(int q, int mm, int k, vector < int > RG, vector < int > CG)
{
m = mm;
memset(MN, 63, sizeof(MN));
for (int i = 0; i < q; i ++)
{
if (RG[i] > CG[i])
swap(RG[i], CG[i]);
MN[CG[i]] = min(MN[CG[i]], RG[i]);
}
for (int i = 0; i < m; i ++)
if (MN[i] <= i)
{
int b = i, a = i - MN[i] + 1;
while (n && B[n] - A[n] >= b - a)
n --;
n ++; B[n] = b; A[n] = a;
F[n] = B[n] - A[n];
}
ld le = 0, ri = (ll)m * m + 1, md;
k = min(k, n);
for (int _ = 0; _ <= 70; _ ++)
{
md = (le + ri) / 2;
auto X = Solve(md);
if (X.second <= k)
ri = md;
else
le = md;
}
ld res = Solve(ri).first - ri * k;
ll ret = floor(res + 0.12);
return (ret);
}
# | Verdict | Execution time | Memory | Grader output |
---|
Fetching results... |
# | Verdict | Execution time | Memory | Grader output |
---|
Fetching results... |
# | Verdict | Execution time | Memory | Grader output |
---|
Fetching results... |
# | Verdict | Execution time | Memory | Grader output |
---|
Fetching results... |
# | Verdict | Execution time | Memory | Grader output |
---|
Fetching results... |
# | Verdict | Execution time | Memory | Grader output |
---|
Fetching results... |