Submission #1315817

#TimeUsernameProblemLanguageResultExecution timeMemory
1315817MunkhErdeneObstacles for a Llama (IOI25_obstacles)C++17
Compilation error
0 ms0 KiB
#include<bits/stdc++.h> using namespace std; #define ll long long #define pb push_back #define ff first #define ss second #define _ << " " << #define yes cout<<"YES\n" #define no cout<<"NO\n" #define ull unsigned long long #define lll __int128 #define all(x) x.begin(),x.end() #define rall(x) x.rbegin(),x.rend() #define BlueCrowner ios_base::sync_with_stdio(0); cin.tie(0); cout.tie(0); #define FOR(i, a, b) for (ll i = (a); i < (b); i++) #define FORD(i, a, b) for (ll i = (a); i >= (b); i--) const ll mod = 1e9 + 7; const ll mod1 = 998244353; const ll naim = 1e9; const ll max_bit = 60; const ull tom = ULLONG_MAX; const ll MAXN = 100005; const ll LOG = 20; const ll NAIM = 1e18; const ll N = 2e6 + 5; // ---------- GCD ---------- ll gcd(ll a, ll b) { while (b) { a %= b; swap(a, b); } return a; } // ---------- LCM ---------- ll lcm(ll a, ll b) { return a / gcd(a, b) * b; } // ---------- Modular Exponentiation ---------- ll modpow(ll a, ll b, ll m = mod) { ll c = 1; a %= m; while (b > 0) { if (b & 1) c = c * a % m; a = a * a % m; b >>= 1; } return c; } // ---------- Modular Inverse (Fermat’s Little Theorem) ---------- ll modinv(ll a, ll m = mod) { return modpow(a, m - 2, m); } // ---------- Factorials and Inverse Factorials ---------- ll fact[N], invfact[N]; void pre_fact(ll n = N-1, ll m = mod) { fact[0] = 1; for (ll i = 1; i <= n; i++) fact[i] = fact[i-1] * i % m; invfact[n] = modinv(fact[n], m); for (ll i = n; i > 0; i--) invfact[i-1] = invfact[i] * i % m; } // ---------- nCr ---------- ll nCr(ll n, ll r, ll m = mod) { if (r < 0 || r > n) return 0; return fact[n] * invfact[r] % m * invfact[n-r] % m; } // ---------- Sieve of Eratosthenes ---------- vector<ll> primes; bool is_prime[N]; void sieve(ll n = N-1) { fill(is_prime, is_prime + n + 1, true); is_prime[0] = is_prime[1] = false; for (ll i = 2; i * i <= n; i++) { if (is_prime[i]) { for (ll j = i * i; j <= n; j += i) is_prime[j] = false; } } for (ll i = 2; i <= n; i++) if (is_prime[i]) primes.pb(i); } vector<int> h, t; void initialize(vector<int> H, vector<int> T) { h = H; t = T; } bool can_reach(int l, int r, int s, int d) { int n = t.size(), m = h.size(); FOR(i, min(s, d), max(s, d)) { if(h[i] >= t[0]) return 0; } return 1; } void solve() { int n, m; cin >> n >> m; vector<int> t(n), h(m); for(auto &x : t) cin >> x; for(auto &x : h) cin >> x; initialize(h, t); ll q; cin >> q; while(q--) { int l, r, s, d; cin >> l >> r >> s >> d; cout << can_reach(l, r, s, d) << '\n'; } } int main() { BlueCrowner; ll t = 1; cin >> t; while (t--) { solve(); } return 0; }

Compilation message (stderr)

/usr/bin/ld: /tmp/ccGByptI.o: in function `main':
grader.cpp:(.text.startup+0x0): multiple definition of `main'; /tmp/cchILin6.o:obstacles.cpp:(.text.startup+0x0): first defined here
collect2: error: ld returned 1 exit status