Submission #1311807

#TimeUsernameProblemLanguageResultExecution timeMemory
1311807Boycl07Hack (APIO25_hack)C++20
0 / 100
11 ms1692 KiB
#include <vector> #include <numeric> #include <algorithm> #include <random> #include <cmath> #include <set> // Declare the interactor provided by the judge long long collisions(std::vector<long long> x); namespace { // Helper to find all divisors of val that are strictly greater than limit std::vector<long long> get_divisors(long long val, long long limit) { std::vector<long long> divs; for (long long i = 1; i * i <= val; ++i) { if (val % i == 0) { if (i > limit) divs.push_back(i); if (val / i > limit && val / i != i) divs.push_back(val / i); } } return divs; } // Check if a candidate n is correct (Cost: 2) bool check_n(long long n) { if (n <= 0) return false; std::vector<long long> q = {1, n + 1}; return collisions(q) > 0; } } int hack() { // --- Phase 1: Efficient check for small N --- // Cost: 2500 const int SMALL_LIMIT = 2500; std::vector<long long> small_q(SMALL_LIMIT); std::iota(small_q.begin(), small_q.end(), 1); if (collisions(small_q) > 0) { // Binary search for small N int low = 2, high = SMALL_LIMIT; int ans = high; while (low <= high) { int mid = low + (high - low) / 2; std::vector<long long> q(mid); std::iota(q.begin(), q.end(), 1); if (collisions(q) > 0) { ans = mid; high = mid - 1; } else { low = mid + 1; } } return ans - 1; } // --- Phase 2: Large N with Optimized Birthday Attack --- // Use a reduced K to ensure Total Cost < 110,000 // K=22000 => Isolation cost ~4*K = 88,000. Fits budget. int K = 22000; std::mt19937_64 rng(1337); // Range limited to 2*10^10 to ensure fast factorization std::uniform_int_distribution<long long> dist(1, 20000000000LL); while (true) { std::vector<long long> current_set; current_set.reserve(K); std::set<long long> distinct_check; // Generate random set while (current_set.size() < K) { long long val = dist(rng); if (distinct_check.insert(val).second) { current_set.push_back(val); } } // Initial check (Cost: K) if (collisions(current_set) > 0) { // Isolation Phase (Divide & Conquer) while (true) { // Optimization: If set is small, brute force all pairs // 12 elements = 66 pairs. Factorizing 66 differences is cheap. if (current_set.size() <= 12) { for (size_t i = 0; i < current_set.size(); ++i) { for (size_t j = i + 1; j < current_set.size(); ++j) { long long diff = std::abs(current_set[i] - current_set[j]); std::vector<long long> cands = get_divisors(diff, SMALL_LIMIT); for (long long cand : cands) { if (check_n(cand)) return (int)cand; } } } // Fallback: If no divisor worked (rare), break to retry outer loop break; } int sz = current_set.size(); int mid = sz / 2; std::vector<long long> left_part(current_set.begin(), current_set.begin() + mid); std::vector<long long> right_part(current_set.begin() + mid, current_set.end()); // Check Left (Cost: sz/2) if (collisions(left_part) > 0) { current_set = left_part; } // Check Right (Cost: sz/2) else if (collisions(right_part) > 0) { current_set = right_part; } // Crossing Collision else { // Both 0, but total > 0. Collision is between Left and Right. // We must shuffle to try a new split. std::shuffle(current_set.begin(), current_set.end(), rng); // Note: We do NOT query 'current_set' again here, we know it collides. // We just loop back and split the shuffled set. } } } // If initial check failed, we loop again with a new random set. } return -1; }
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...