제출 #1311806

#제출 시각아이디문제언어결과실행 시간메모리
1311806Boycl07Hack (APIO25_hack)C++20
0 / 100
28 ms3696 KiB
#include <vector> #include <numeric> #include <algorithm> #include <random> #include <cmath> #include <set> // Declare the interactor function long long collisions(std::vector<long long> x); namespace { // Helper to find all divisors of val that are strictly greater than limit std::vector<long long> get_divisors(long long val, long long limit) { std::vector<long long> divs; for (long long i = 1; i * i <= val; ++i) { if (val % i == 0) { if (i > limit) divs.push_back(i); if (val / i > limit && val / i != i) divs.push_back(val / i); } } return divs; // Order doesn't strictly matter, but smaller first is usually better for finding minimal n } // Check if a candidate n is correct bool check_n(long long n) { if (n <= 0) return false; std::vector<long long> q = {1, n + 1}; return collisions(q) > 0; } } int hack() { // --- Phase 1: Efficient check for small N --- const int SMALL_LIMIT = 2500; std::vector<long long> small_q(SMALL_LIMIT); std::iota(small_q.begin(), small_q.end(), 1); if (collisions(small_q) > 0) { // Binary search for the exact boundary int low = 2, high = SMALL_LIMIT; int ans = high; while (low <= high) { int mid = low + (high - low) / 2; std::vector<long long> q(mid); std::iota(q.begin(), q.end(), 1); if (collisions(q) > 0) { ans = mid; high = mid - 1; } else { low = mid + 1; } } return ans - 1; } // --- Phase 2: Large N with Birthday Attack --- // Use fixed seed for reproducibility and valid logic std::mt19937_64 rng(123456789); // Range limited to 2*10^10 to ensure fast factorization std::uniform_int_distribution<long long> dist(1, 20000000000LL); // K=52000 gives ~74% success rate for n=10^9. // Cost analysis: 52k (init) + ~52k (isolation) = ~104k. Fits < 110k budget. int K = 52000; while (true) { std::vector<long long> current_set; current_set.reserve(K); std::set<long long> distinct_check; // Use set to ensure distinctness quickly while (current_set.size() < K) { long long val = dist(rng); if (distinct_check.insert(val).second) { current_set.push_back(val); } } if (collisions(current_set) > 0) { // Collision found, isolate the pair while (true) { // Base case: small enough set to brute force if (current_set.size() <= 6) { // Check all pairs in the small set for (size_t i = 0; i < current_set.size(); ++i) { for (size_t j = i + 1; j < current_set.size(); ++j) { long long diff = std::abs(current_set[i] - current_set[j]); std::vector<long long> cands = get_divisors(diff, SMALL_LIMIT); for (long long cand : cands) { if (check_n(cand)) return (int)cand; } } } // If we failed here (unlikely but possible if collision vanished due to some logic error), // break to retry outer loop break; } int sz = current_set.size(); int mid = sz / 2; std::vector<long long> left_part(current_set.begin(), current_set.begin() + mid); std::vector<long long> right_part(current_set.begin() + mid, current_set.end()); if (collisions(left_part) > 0) { current_set = left_part; } else if (collisions(right_part) > 0) { current_set = right_part; } else { // Crossing collision. Shuffle and retry split. std::shuffle(current_set.begin(), current_set.end(), rng); } } } // If no collision in initial set, loop repeats with a fresh set. } return -1; }
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...