Submission #1289758

#TimeUsernameProblemLanguageResultExecution timeMemory
1289758MunkhErdeneArranging Shoes (IOI19_shoes)C++17
100 / 100
200 ms142916 KiB
#include<bits/stdc++.h> using namespace std; #define ll long long #define pb push_back #define ff first #define ss second #define _ << " " << #define yes cout<<"YES\n" #define no cout<<"NO\n" #define ull unsigned long long #define lll __int128 #define all(x) x.begin(),x.end() #define rall(x) x.rbegin(),x.rend() #define BlueCrowner ios_base::sync_with_stdio(0); cin.tie(0); cout.tie(0); #define FOR(i, a, b) for (ll i = (a); i < (b); i++) #define FORD(i, a, b) for (ll i = (a); i >= (b); i--) const ll mod = 1e9 + 7; const ll mod1 = 998244353; const ll naim = 1e9; const ll max_bit = 60; const ull tom = ULLONG_MAX; const ll MAXN = 100005; const ll LOG = 20; const ll NAIM = 1e18; const ll N = 2e6 + 5; // ---------- GCD ---------- ll gcd(ll a, ll b) { while (b) { a %= b; swap(a, b); } return a; } // ---------- LCM ---------- ll lcm(ll a, ll b) { return a / gcd(a, b) * b; } // ---------- Modular Exponentiation ---------- ll modpow(ll a, ll b, ll m = mod) { ll c = 1; a %= m; while (b > 0) { if (b & 1) c = c * a % m; a = a * a % m; b >>= 1; } return c; } // ---------- Modular Inverse (Fermat’s Little Theorem) ---------- ll modinv(ll a, ll m = mod) { return modpow(a, m - 2, m); } // ---------- Factorials and Inverse Factorials ---------- ll fact[N], invfact[N]; void pre_fact(ll n = N-1, ll m = mod) { fact[0] = 1; for (ll i = 1; i <= n; i++) fact[i] = fact[i-1] * i % m; invfact[n] = modinv(fact[n], m); for (ll i = n; i > 0; i--) invfact[i-1] = invfact[i] * i % m; } // ---------- nCr ---------- ll nCr(ll n, ll r, ll m = mod) { if (r < 0 || r > n) return 0; return fact[n] * invfact[r] % m * invfact[n-r] % m; } // ---------- Sieve of Eratosthenes ---------- vector<ll> primes; bool is_prime[N]; void sieve(ll n = N-1) { fill(is_prime, is_prime + n + 1, true); is_prime[0] = is_prime[1] = false; for (ll i = 2; i * i <= n; i++) { if (is_prime[i]) { for (ll j = i * i; j <= n; j += i) is_prime[j] = false; } } for (ll i = 2; i <= n; i++) if (is_prime[i]) primes.pb(i); } //2 + 7 + 1 + 3 + 9 ll count_swaps(vector<int> S){ ll n = S.size() / 2; set<ll> nums; for(auto &x : S) nums.insert(abs(x)); vector<queue<ll>> posL(n + 1); vector<queue<ll>> posR(n + 1); FOR(i, 0, 2 * n){ if(S[i] < 0) posL[-S[i]].push(i); else posR[S[i]].push(i); } struct BIT{ ll n; vector<ll> sum; BIT(ll _n){ n = _n; sum.assign(n + 1, 0ll); } void add(ll pos, ll val){ for(ll i = pos; i <= n; i += i & -i) sum[i] += val; } void update(ll l, ll r, ll val){ add(l, val); add(r + 1, -val); } ll query(ll pos){ ll ans = 0; for(ll i = pos; i > 0; i -= i & -i) ans += sum[i]; return ans; } }; BIT bit(2 * n); ll ans = 0; vector<bool> used(2 * n, 0); FOR(i, 0, n * 2){ ll x = abs(S[i]); if(posL[x].empty()) continue; ll topL = posL[x].front(); ll topR = posR[x].front(); if(used[i]) continue; posL[x].pop(); posR[x].pop(); used[topL] = 1; used[topR] = 1; if(topL > topR) { ans += topL - topR + bit.query(topL + 1) - bit.query(topR + 1); bit.update(topR + 1, topL, 1); } else { ans += topR - topL - 1 + bit.query(topR + 1) - bit.query(topL + 1); bit.update(topL + 2, topR, 1); } } return ans; // 3 + 2 + 1 + 7 + 11 // 9 + 7 + 5 + 2 + 1 + 1 // 15 + 13 + 0 + 3 + 3 + 1 + 1 } /*void solve() { ll n; cin >> n; vector<int> S(n * 2); for(auto &x : S) cin >> x; cout << count_swaps(S) << '\n'; } int main() { BlueCrowner; ll t = 1; //cin >> t; while (t--) { solve(); } return 0; }*/
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...