Submission #128964

# Submission time Handle Problem Language Result Execution time Memory
128964 2019-07-11T11:30:30 Z youngyojun Fibonacci representations (CEOI18_fib) C++11
100 / 100
3143 ms 16296 KB
#include <bits/stdc++.h>
#define eb emplace_back
#define sz(V) ((int)(V).size())
#define allv(V) ((V).begin()),((V).end())
#define sorv(V) sort(allv(V))
#define univ(V) (V).erase(unique(allv(V)),(V).end())
#define upmin(a,b) (a)=min((a),(b))
#define INF (0x3f3f3f3f)
using namespace std;
typedef long long ll;
typedef pair<int, int> pii;

const int MOD = 1000000007;

struct MAT {
	MAT(int a = 1, int b = 0, int c = 0, int d = 1)
		: a(a), b(b), c(c), d(d) {}
	int a, b, c, d;

	void init() { a = d = 1; b = c = 0; }
	MAT operator * (const MAT &t) const {
		return MAT((ll(a)*t.a + ll(b)*t.c)%MOD, (ll(a)*t.b + ll(b)*t.d)%MOD
				 , (ll(c)*t.a + ll(d)*t.c)%MOD, (ll(c)*t.b + ll(d)*t.d)%MOD);
	}
};

const int MAXN = 100005;
const int SQRN = 360;

struct BUK {
	MAT mat[SQRN*2+5], matProd;
	int S[SQRN*2+5], E[SQRN*2+5];
	int n;

	void init() { n = 0; matProd.init(); }
	static void cal(MAT &mat, int ps, int pe, int s, int e) {
		if(ps < 0) { mat.init(); return; }
		int l = s-pe-1, c = (e-s)>>1;
		mat.a = (l+1)>>1; mat.b = l>>1;
		mat.c = (ll(c)*((l+1)>>1) + 1) % MOD;
		mat.d = (ll(c)*(l>>1) + 1) % MOD;
	}
	void calAll() {
		matProd.init();
		for(int i = 0; i < n; i++)
			matProd = mat[i] * matProd;
	}
	int find(int X) {
		if(!n || X < S[0] || E[n-1] < X) return -1;
		int i = 0; for(; i < n && S[i] < X; i++);
		return i;
	}
	void push(int s, int e) {
		int i = 0; for(; i < n && S[i] < s; i++);
		for(int j = n; i < j; j--) {
			swap(mat[j-1], mat[j]);
			S[j] = S[j-1];
			E[j] = E[j-1];
		}
		S[i] = s; E[i] = e; n++;
		cal(mat[i], S[i-1], E[i-1], s, e);
		cal(mat[i+1], s, e, S[i+1], E[i+1]);
	}
	void pushFront(int ps, int pe, int s, int e) {
		for(int i = n; i; i--) {
			swap(mat[i-1], mat[i]);
			S[i] = S[i-1];
			E[i] = E[i-1];
		}
		S[0] = s; E[0] = e; n++;
		cal(mat[0], ps, pe, s, e);
		cal(mat[1], s, e, S[1], E[1]);
	}
	void pushBack(int s, int e) {
		S[n] = s; E[n] = e;
		cal(mat[n], S[n-1], E[n-1], s, e);
		n++;
	}
	void pushNew(int ps, int pe, int s, int e) {
		S[0] = s; E[0] = e; n = 1;
		cal(mat[0], ps, pe, s, e);
	}
	void pop(int ps, int pe, int i) {
		cal(mat[i+1], ps, pe, S[i+1], E[i+1]);
		for(int j = i+1; j < n; j++) {
			swap(mat[j-1], mat[j]);
			S[j-1] = S[j];
			E[j-1] = E[j];
		}
		n--;
	}
};

struct TBL {
	BUK buk[SQRN+5];

	MAT mat[MAXN*2];
	int S[MAXN*2], E[MAXN*2];
	int n, qn;

	void release() {
		n = qn = 0;
		for(int i = 0; i < SQRN+5; i++) {
			for(int j = 0; j < buk[i].n; j++) {
				mat[n] = buk[i].mat[j];
				S[n] = buk[i].S[j];
				E[n] = buk[i].E[j];
				n++;
			}
			buk[i].init();
		}
		for(int s = 0, e, i = 0;;) {
			e = s+SQRN-1;
			if(n <= e) e = n-1;
			if(s > e) break;
			buk[i].n = e-s+1;
			for(int j = s, c = 0; j <= e; j++) {
				buk[i].mat[c] = mat[j];
				buk[i].S[c] = S[j];
				buk[i].E[c] = E[j];
				c++;
			}
			buk[i].calAll();
			s = e+1; i++;
		}
	}

	int findNxt(int i) {
		for(i++; i < SQRN+5 && !buk[i].n; i++);
		return SQRN+5 <= i ? -1 : i;
	}
	int findPrev(int i) {
		for(i--; 0 <= i && !buk[i].n; i--);
		return i;
	}
	void findPrev(int i, int j, int &ps, int &pe) {
		if(j) {
			ps = buk[i].S[j-1];
			pe = buk[i].E[j-1];
			return;
		}
		i = findPrev(i);
		if(0 <= i) {
			ps = buk[i].S[buk[i].n-1];
			pe = buk[i].E[buk[i].n-1];
			return;
		}
		ps = pe = -1;
	}

	void _push(int s, int e) {
		int i = 0;
		for(; i < SQRN+5 && (!buk[i].n || buk[i].E[buk[i].n-1] < s); i++);
		if(SQRN+3 < i) {
			i = SQRN+3;
			if(!buk[i].n) {
				int ps, pe; findPrev(i, 0, ps, pe);
				buk[i].pushNew(ps, pe, s, e);
				buk[i].calAll();
				return;
			}
			if(e < buk[i].S[0]) {
				int ps, pe; findPrev(i, 0, ps, pe);
				buk[i].pushFront(ps, pe, s, e);
				buk[i].calAll();
				return;
			}
			if(buk[i].E[buk[i].n-1] < s) {
				buk[i].pushBack(s, e);
				buk[i].calAll();
				return;
			}
			buk[i].push(s, e);
			buk[i].calAll();
			return;
		}
		if(!buk[i].n) {
			int ps, pe; findPrev(i, 0, ps, pe);
			buk[i].pushNew(ps, pe, s, e);
			buk[i].calAll();
			int nxt = findNxt(i);
			if(0 <= nxt) {
				BUK::cal(buk[nxt].mat[0], s, e, buk[nxt].S[0], buk[nxt].E[0]);
				buk[nxt].calAll();
			}
			return;
		}
		if(e < buk[i].S[0]) {
			int ps, pe; findPrev(i, 0, ps, pe);
			buk[i].pushFront(ps, pe, s, e);
			buk[i].calAll();
			return;
		}
		buk[i].push(s, e);
		buk[i].calAll();
	}

	void _pop(int s, int e) {
		int i = 0, j = -1;
		for(; i < SQRN+5; i++) {
			j = buk[i].find(s);
			if(0 <= j) break;
		}
		if(buk[i].n-1 == j) {
			int nxt = findNxt(i);
			int ps, pe; findPrev(i, j, ps, pe);
			if(0 <= nxt) {
				BUK::cal(buk[nxt].mat[0], ps, pe, buk[nxt].S[0], buk[nxt].E[0]);
				buk[nxt].calAll();
			}
			buk[i].n--;
			buk[i].calAll();
			return;
		}
		int ps, pe; findPrev(i, j, ps, pe);
		buk[i].pop(ps, pe, j);
		buk[i].calAll();
	}

	void push(int s, int e) {
		qn++;
		_push(s, e);
		if(SQRN == qn) release();
	}
	void pop(int s, int e) {
		qn++;
		_pop(s, e);
		if(SQRN == qn) release();
	}
	MAT get() {
		MAT ret;
		for(int i = 0; i < SQRN+5; i++) if(buk[i].n)
			ret = buk[i].matProd * ret;
		return ret;
	}
} tbl;




set<pii> CH;

set<pii>::iterator get(int X) { return prev(CH.upper_bound({X, INF})); }
bool has(int X) {
	auto it = CH.upper_bound({X, INF});
	if(CH.begin() == it) return false;
	int s, e; tie(s, e) = *prev(it);
	return s <= X && X <= e && (s&1) == (X&1);
}

void insert(int s, int e) {
	bool flag = CH.insert({s, e}).second;
	if(flag) tbl.push(s, e);
}
void erase(set<pii>::iterator it) {
	tbl.pop(it->first, it->second);
	CH.erase(it);
}

void push(int X) {
	if(X < 1) return;
	if(1 == X) X = 2;
	if(!has(X)) {
		if(has(X-1) && !has(X+1)) {
			auto it = get(X-1);
			int s, e; tie(s, e) = *it;
			erase(it);
			e -= 2;
			if(s <= e) insert(s, e);
			push(X+1);
			return;
		}
		if(!has(X-1) && has(X+1)) {
			auto it = get(X+1);
			int s, e; tie(s, e) = *it;
			erase(it);
			push(e+1);
			return;
		}
		if(has(X-1) && has(X+1)) {
			auto it = get(X);
			int s, e; tie(s, e) = *it;
			erase(it);
			insert(s, X-1);
			push(e+1);
			return;
		}
		int s = X, e = X;
		if(has(X-2)) {
			auto it = get(X-2);
			int p, q; tie(p, q) = *it;
			erase(it);
			s = p;
		}
		if(has(X+2)) {
			auto it = get(X+2);
			int p, q; tie(p, q) = *it;
			erase(it);
			e = q;
		}
		insert(s, e);
		return;
	}

	auto it = get(X);
	int s, e; tie(s, e) = *it;
	erase(it);
	if(s+1 < X) insert(s+1, X-1);
	push(e+1);
	push(s-2);
}


int N;

ll getAns() {
	if(CH.empty()) return 0;
	MAT mat = tbl.get();
	int s, e; tie(s, e) = *CH.begin();
	ll a = 0, b;
	if(1 < s-2) a = (ll(s-4)/2 + 1) % MOD;
	b = (1 + ll(s-2)/2 * ((e-s)/2)) % MOD;

	ll ret = a*mat.a % MOD;
	ret += b*mat.b % MOD;
	ret += a*mat.c % MOD;
	ret += b*mat.d % MOD;
	return ret % MOD;
}

int main() {
	ios::sync_with_stdio(false);

	cin >> N;
	for(int i = 0; i < N; i++) {
		int x;
		cin >> x;
		push(x+1);
		printf("%lld\n", getAns());
	}
	return 0;
}
# Verdict Execution time Memory Grader output
1 Correct 9 ms 9084 KB Output is correct
2 Correct 9 ms 9124 KB Output is correct
3 Correct 9 ms 9080 KB Output is correct
4 Correct 9 ms 9080 KB Output is correct
5 Correct 10 ms 9084 KB Output is correct
6 Correct 9 ms 9080 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 9 ms 9084 KB Output is correct
2 Correct 9 ms 9124 KB Output is correct
3 Correct 9 ms 9080 KB Output is correct
4 Correct 9 ms 9080 KB Output is correct
5 Correct 10 ms 9084 KB Output is correct
6 Correct 9 ms 9080 KB Output is correct
7 Correct 9 ms 9080 KB Output is correct
8 Correct 9 ms 9080 KB Output is correct
9 Correct 10 ms 9080 KB Output is correct
10 Correct 10 ms 9080 KB Output is correct
11 Correct 10 ms 9080 KB Output is correct
12 Correct 10 ms 9080 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 11 ms 9080 KB Output is correct
2 Correct 9 ms 9080 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 9 ms 9084 KB Output is correct
2 Correct 9 ms 9124 KB Output is correct
3 Correct 9 ms 9080 KB Output is correct
4 Correct 9 ms 9080 KB Output is correct
5 Correct 10 ms 9084 KB Output is correct
6 Correct 9 ms 9080 KB Output is correct
7 Correct 9 ms 9080 KB Output is correct
8 Correct 9 ms 9080 KB Output is correct
9 Correct 10 ms 9080 KB Output is correct
10 Correct 10 ms 9080 KB Output is correct
11 Correct 10 ms 9080 KB Output is correct
12 Correct 10 ms 9080 KB Output is correct
13 Correct 11 ms 9080 KB Output is correct
14 Correct 9 ms 9080 KB Output is correct
15 Correct 10 ms 9080 KB Output is correct
16 Correct 9 ms 9080 KB Output is correct
17 Correct 9 ms 9080 KB Output is correct
18 Correct 9 ms 9080 KB Output is correct
19 Correct 9 ms 9080 KB Output is correct
20 Correct 10 ms 9208 KB Output is correct
21 Correct 10 ms 9080 KB Output is correct
22 Correct 10 ms 9080 KB Output is correct
23 Correct 10 ms 9080 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 9 ms 9080 KB Output is correct
2 Correct 1310 ms 16168 KB Output is correct
3 Correct 1406 ms 15036 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 9 ms 9084 KB Output is correct
2 Correct 9 ms 9124 KB Output is correct
3 Correct 9 ms 9080 KB Output is correct
4 Correct 9 ms 9080 KB Output is correct
5 Correct 10 ms 9084 KB Output is correct
6 Correct 9 ms 9080 KB Output is correct
7 Correct 9 ms 9080 KB Output is correct
8 Correct 9 ms 9080 KB Output is correct
9 Correct 10 ms 9080 KB Output is correct
10 Correct 10 ms 9080 KB Output is correct
11 Correct 10 ms 9080 KB Output is correct
12 Correct 10 ms 9080 KB Output is correct
13 Correct 11 ms 9080 KB Output is correct
14 Correct 9 ms 9080 KB Output is correct
15 Correct 10 ms 9080 KB Output is correct
16 Correct 9 ms 9080 KB Output is correct
17 Correct 9 ms 9080 KB Output is correct
18 Correct 9 ms 9080 KB Output is correct
19 Correct 9 ms 9080 KB Output is correct
20 Correct 10 ms 9208 KB Output is correct
21 Correct 10 ms 9080 KB Output is correct
22 Correct 10 ms 9080 KB Output is correct
23 Correct 10 ms 9080 KB Output is correct
24 Correct 9 ms 9080 KB Output is correct
25 Correct 1310 ms 16168 KB Output is correct
26 Correct 1406 ms 15036 KB Output is correct
27 Correct 274 ms 11256 KB Output is correct
28 Correct 511 ms 12608 KB Output is correct
29 Correct 67 ms 9308 KB Output is correct
30 Correct 560 ms 12408 KB Output is correct
31 Correct 1107 ms 9912 KB Output is correct
32 Correct 1046 ms 11724 KB Output is correct
33 Correct 1474 ms 10408 KB Output is correct
34 Correct 153 ms 9788 KB Output is correct
35 Correct 1483 ms 10412 KB Output is correct
36 Correct 1542 ms 10292 KB Output is correct
37 Correct 766 ms 10132 KB Output is correct
38 Correct 1312 ms 16296 KB Output is correct
39 Correct 108 ms 9720 KB Output is correct
40 Correct 136 ms 9692 KB Output is correct
41 Correct 1659 ms 10508 KB Output is correct
42 Correct 1313 ms 16248 KB Output is correct
43 Correct 173 ms 10360 KB Output is correct
44 Correct 167 ms 10352 KB Output is correct
45 Correct 3048 ms 11104 KB Output is correct
46 Correct 205 ms 10332 KB Output is correct
47 Correct 2464 ms 14024 KB Output is correct
48 Correct 2679 ms 10408 KB Output is correct
49 Correct 3143 ms 10856 KB Output is correct
50 Correct 1668 ms 15680 KB Output is correct