제출 #1285035

#제출 시각아이디문제언어결과실행 시간메모리
1285035MunkhErdeneSeptember (APIO24_september)C++17
100 / 100
144 ms17276 KiB
#include<bits/stdc++.h> #include "september.h" using namespace std; #define ll long long #define pb push_back #define ff first #define ss second #define _ << " " << #define yes cout<<"YES\n" #define no cout<<"NO\n" #define ull unsigned long long #define lll __int128 #define all(x) x.begin(),x.end() #define rall(x) x.rbegin(),x.rend() #define BlueCrowner ios_base::sync_with_stdio(0); cin.tie(0); cout.tie(0); #define FOR(i, a, b) for (ll i = (a); i < (b); i++) #define FORD(i, a, b) for (ll i = (a); i >= (b); i--) const ll mod = 1e9 + 7; const ll mod1 = 998244353; const ll naim = 1e9; const ll max_bit = 60; const ull tom = ULLONG_MAX; const ll MAXN = 100005; const ll LOG = 20; const ll NAIM = 1e18; const ll N = 2e6 + 5; // ---------- GCD ---------- ll gcd(ll a, ll b) { while (b) { a %= b; swap(a, b); } return a; } // ---------- LCM ---------- ll lcm(ll a, ll b) { return a / gcd(a, b) * b; } // ---------- Modular Exponentiation ---------- ll modpow(ll a, ll b, ll m = mod) { ll c = 1; a %= m; while (b > 0) { if (b & 1) c = c * a % m; a = a * a % m; b >>= 1; } return c; } // ---------- Modular Inverse (Fermat’s Little Theorem) ---------- ll modinv(ll a, ll m = mod) { return modpow(a, m - 2, m); } // ---------- Factorials and Inverse Factorials ---------- ll fact[N], invfact[N]; void pre_fact(ll n = N-1, ll m = mod) { fact[0] = 1; for (ll i = 1; i <= n; i++) fact[i] = fact[i-1] * i % m; invfact[n] = modinv(fact[n], m); for (ll i = n; i > 0; i--) invfact[i-1] = invfact[i] * i % m; } // ---------- nCr ---------- ll nCr(ll n, ll r, ll m = mod) { if (r < 0 || r > n) return 0; return fact[n] * invfact[r] % m * invfact[n-r] % m; } // ---------- Sieve of Eratosthenes ---------- vector<ll> primes; bool is_prime[N]; void sieve(ll n = N-1) { fill(is_prime, is_prime + n + 1, true); is_prime[0] = is_prime[1] = false; for (ll i = 2; i * i <= n; i++) { if (is_prime[i]) { for (ll j = i * i; j <= n; j += i) is_prime[j] = false; } } for (ll i = 2; i <= n; i++) if (is_prime[i]) primes.pb(i); } int solve(int N, int M, std::vector<int> F, std::vector<std::vector<int>> S) { vector<vector<int>> g(N); FOR(i, 1, N) { g[F[i]].pb(i); } vector<int> maxpos(N, 0); FOR(i, 0, M){ FOR(j, 0, N - 1) maxpos[S[i][j]] = max(maxpos[S[i][j]], (int)j); } function<void(int)> dfs = [&](ll u){ for(auto &x : g[u]){ dfs(x); maxpos[u] = max(maxpos[u], maxpos[x]); } }; dfs(0); int ans = 0, cur = - 1; FOR(i, 0, N - 1) { if (cur < i) ans++; FOR(j, 0, M) cur = max(cur, maxpos[S[j][i]]); } return ans; } /*void taskcase() { ll N, M; cin >> N >> M; std::vector<int> F(N); for (int i = 0; i < N; ++i) cin >> F[i]; std::vector<std::vector<int>> S(M, std::vector<int>(N - 1)); for (int i = 0; i < M; ++i) for (int j = 0; j < N - 1; ++j) cin >> S[i][j]; cout << solve(N, M, F, S) << '\n'; } int main() { //BlueCrowner; ll t = 1; cin >> t; while (t--) { taskcase(); } return 0; }*/
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...