Submission #127350

# Submission time Handle Problem Language Result Execution time Memory
127350 2019-07-09T09:12:04 Z RockyB Coin Collecting (JOI19_ho_t4) C++17
100 / 100
103 ms 16056 KB
/// In The Name Of God

//#pragma GCC optimize("Ofast")
//#pragma GCC target("sse,sse2,sse3,ssse3,sse4")
//#pragma GCC target("sse,sse2,sse3,ssse3,sse4,popcnt,abm,mmx,avx,avx2,tune=native")
//#pragma GCC optimize("unroll-loops")

#include <bits/stdc++.h>

#define f first
#define s second

#define pb push_back
#define pp pop_back
#define mp make_pair

#define sz(x) (int)x.size()
#define sqr(x) ((x) * 1ll * (x))
#define all(x) x.begin(), x.end()

#define rep(i, l, r) for (int i = (l); i <= (r); i++)
#define per(i, l, r) for (int i = (l); i >= (r); i--)

#define Kazakhstan ios_base :: sync_with_stdio(0), cin.tie(0), cout.tie(0);

#define nl '\n'
#define ioi exit(0);

typedef long long ll;
typedef long double ld;
typedef unsigned long long ull;

const int N = (int)2e5 + 7;
const int inf = (int)1e9 + 7;
const int mod = (int)1e9 + 7;
const ll linf = (ll)1e18 + 7;

const int dx[] = {-1, 0, 1, 0, 1, -1, -1, 1};
const int dy[] = {0, 1, 0, -1, 1, -1, 1, -1};

using namespace std;

int n;
pair <ll, ll> a[N << 1];

ll dst(pair <ll, ll> x, pair <ll, ll> y) {
  return abs(x.f - y.f) + abs(x.s - y.s);
}

int cnt[N][3];


ll go1(int x, int y) {
  ll mn = linf;
  pair <int, int> go = {-1, -1};
  rep(j, 1, 2) {
    rep(i, 1, n) {
      if (!cnt[i][j]) {
        ll cur = dst({x, y}, {i, j});
        if (cur < mn) {
          mn = cur;
          go = {i, j};
        }
      }
    }
  }
  cnt[go.f][go.s]++;
  return mn;
}
ll go2(int x, int y) {
  ll mn = linf;
  pair <int, int> go = {-1, -1};
  per(j, 2, 1) {
    rep(i, 1, n) {
      if (!cnt[i][j]) {
        ll cur = dst({x, y}, {i, j});
        if (cur < mn) {
          mn = cur;
          go = {i, j};
        }
      }
    }
  }
  cnt[go.f][go.s]++;
  return mn;
}
ll fnd(int x, int y) {
  ll mn = linf;
  pair <int, int> go = {-1, -1};
  rep(i, 1, n) {
    rep(j, 1, 2) {
      if (cnt[i][j] > 1) {
        ll cur = dst({i, j}, {x, y});
        if (cur < mn) {
          mn = cur;
          go = {i, j};
        }
      }
    }
  }
  cnt[go.f][go.s]--;
  return mn;
}

vector <int> em[3], fl[3];
ll calc(int v = 1) {
  if (v > n) return 0;
  ll res = 0;

  rep(j, 1, 2) {
    if (!cnt[v][j]) em[j].pb(v);
    if (cnt[v][j] > 1) fl[j].pb(v);
  }

  rep(j, 1, 2) {
    while (sz(em[j]) && cnt[v][j] > 1) {
      int p = em[j].back();
      if (!cnt[p][j]) {
        cnt[v][j]--;
        cnt[p][j]++;
        res += v - p;
        em[j].pp();
      }
      else em[j].pp();
    }
    /* per(p, v, 1) {
      if (cnt[v][j] > 1 && !cnt[p][j]) {
        cnt[v][j]--;
        cnt[p][j]++;
        res += v - p;
      }
    } */
  }
  
  rep(j, 1, 2) {
    if (!cnt[v][j]) {
      while (sz(fl[j])) {
        int p = fl[j].back();
        if (cnt[p][j] > 1) {
          res += v - p;
          cnt[p][j]--;
          cnt[v][j]++;
          if (cnt[p][j] == 1) fl[j].pp();
          break;
        }
        else fl[j].pp();
      }
    }
  }
  rep(j, 1, 2) {
    while (sz(em[3 - j]) && cnt[v][j] > 1) {
      int p = em[3 - j].back();
      if (!cnt[p][3 - j]) {
        cnt[v][j]--;
        cnt[p][3 - j]++;
        res += v - p + 1;
        em[3 - j].pp();
      }
      else em[3 - j].pp();
    }
    /* per(p, v, 1) {
      if (cnt[v][j] > 1 && !cnt[p][3 - j]) {
        cnt[v][j]--;
        cnt[p][3 - j]++;
        res += v - p + 1;
      }
    } */
  }
  rep(j, 1, 2) {
    if (!cnt[v][j]) {
      while (sz(fl[3 - j])) {
        int p = fl[3 - j].back();
        if (cnt[p][3 - j] > 1) {
          res += v - p + 1;
          cnt[p][3 - j]--;
          cnt[v][j]++;
          if (cnt[p][3 - j] == 1) fl[3 - j].pp();
          break;
        }
        else fl[3 - j].pp();
      }
      /* per(p, v, 1) {
        if (cnt[p][3 - j] > 1) {
          res += v - p + 1;
          cnt[p][3 - j]--;
          cnt[v][j]++;
          break;
        }
      } */
    }
  }

  return res + calc(v + 1); 
}
int main() {
	#ifdef IOI
		freopen ("in.txt", "r", stdin);
    freopen ("D.out", "w", stdout);
	#endif
  Kazakhstan
  cin >> n;
  rep(i, 1, n << 1) {
    cin >> a[i].f >> a[i].s;
  }
  sort (a + 1, a + n + n + 1);
  ll ans = 0;
  vector < pair <int, int > > to;
  to.pb({1, 1});
  to.pb({1, 2});
  to.pb({n, 1});
  to.pb({n, 2});
  rep(i, 1, n << 1) {
  
    ll mn = linf;
    pair <int, int> go = {-1, -1};
    
    to.pb({a[i].f, 2});
    to.pb({a[i].f, 1});
    to.pb({n, a[i].s});
    to.pb({1, a[i].s});

    for (auto it : to) {
      if (!(1 <= it.f && it.f <= n && 1 <= it.s && it.s <= 2)) {
        continue;
      }
      ll cur = dst(a[i], it);
      if (cur < mn) {
        mn = cur;
        go = it;
      }
    }
    rep(j, 1, 4) to.pp();

    /* rep(x, 1, n) {
      rep(y, 1, 2) {
        ll cur = dst(a[i], {x, y});
        if (cur < mn) {
          mn = cur;
          go = {x, y};
        }
      }
    } */
    ans += mn;
    cnt[go.f][go.s]++;
    // // cerr << a[i].f << ' ' << a[i].s << " -> " << go.f << ' ' << go.s << nl;
  }

  per(j, 2, 1) {
    rep(i, 1, n) {
      // cerr << cnt[i][j] << ' ';
    }
    // cerr << nl;
  } 
  // cerr << ans << nl;
  
  //// cerr << calc() << ' ' << ans <<nl;
  cout << ans + calc();
  per(j, 2, 1) {
    rep(i, 1, n) {
      // cerr << cnt[i][j] << ' ';
    }
    // cerr << nl;
  } 
  // cerr << ans << nl;

	ioi
}
# Verdict Execution time Memory Grader output
1 Correct 2 ms 376 KB Output is correct
2 Correct 2 ms 376 KB Output is correct
3 Correct 2 ms 376 KB Output is correct
4 Correct 2 ms 376 KB Output is correct
5 Correct 2 ms 376 KB Output is correct
6 Correct 2 ms 380 KB Output is correct
7 Correct 2 ms 376 KB Output is correct
8 Correct 2 ms 380 KB Output is correct
9 Correct 2 ms 376 KB Output is correct
10 Correct 2 ms 376 KB Output is correct
11 Correct 2 ms 376 KB Output is correct
12 Correct 2 ms 376 KB Output is correct
13 Correct 2 ms 376 KB Output is correct
14 Correct 2 ms 376 KB Output is correct
15 Correct 2 ms 376 KB Output is correct
16 Correct 2 ms 376 KB Output is correct
17 Correct 2 ms 376 KB Output is correct
18 Correct 2 ms 376 KB Output is correct
19 Correct 2 ms 376 KB Output is correct
20 Correct 2 ms 376 KB Output is correct
21 Correct 2 ms 376 KB Output is correct
22 Correct 2 ms 376 KB Output is correct
23 Correct 2 ms 376 KB Output is correct
24 Correct 2 ms 376 KB Output is correct
25 Correct 2 ms 376 KB Output is correct
26 Correct 2 ms 380 KB Output is correct
27 Correct 2 ms 376 KB Output is correct
28 Correct 2 ms 376 KB Output is correct
29 Correct 2 ms 376 KB Output is correct
30 Correct 2 ms 376 KB Output is correct
31 Correct 2 ms 376 KB Output is correct
32 Correct 2 ms 376 KB Output is correct
33 Correct 2 ms 376 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 2 ms 376 KB Output is correct
2 Correct 2 ms 376 KB Output is correct
3 Correct 2 ms 376 KB Output is correct
4 Correct 2 ms 376 KB Output is correct
5 Correct 2 ms 376 KB Output is correct
6 Correct 2 ms 380 KB Output is correct
7 Correct 2 ms 376 KB Output is correct
8 Correct 2 ms 380 KB Output is correct
9 Correct 2 ms 376 KB Output is correct
10 Correct 2 ms 376 KB Output is correct
11 Correct 2 ms 376 KB Output is correct
12 Correct 2 ms 376 KB Output is correct
13 Correct 2 ms 376 KB Output is correct
14 Correct 2 ms 376 KB Output is correct
15 Correct 2 ms 376 KB Output is correct
16 Correct 2 ms 376 KB Output is correct
17 Correct 2 ms 376 KB Output is correct
18 Correct 2 ms 376 KB Output is correct
19 Correct 2 ms 376 KB Output is correct
20 Correct 2 ms 376 KB Output is correct
21 Correct 2 ms 376 KB Output is correct
22 Correct 2 ms 376 KB Output is correct
23 Correct 2 ms 376 KB Output is correct
24 Correct 2 ms 376 KB Output is correct
25 Correct 2 ms 376 KB Output is correct
26 Correct 2 ms 380 KB Output is correct
27 Correct 2 ms 376 KB Output is correct
28 Correct 2 ms 376 KB Output is correct
29 Correct 2 ms 376 KB Output is correct
30 Correct 2 ms 376 KB Output is correct
31 Correct 2 ms 376 KB Output is correct
32 Correct 2 ms 376 KB Output is correct
33 Correct 2 ms 376 KB Output is correct
34 Correct 3 ms 504 KB Output is correct
35 Correct 3 ms 504 KB Output is correct
36 Correct 3 ms 504 KB Output is correct
37 Correct 3 ms 504 KB Output is correct
38 Correct 3 ms 504 KB Output is correct
39 Correct 3 ms 504 KB Output is correct
40 Correct 3 ms 504 KB Output is correct
41 Correct 3 ms 504 KB Output is correct
42 Correct 3 ms 504 KB Output is correct
43 Correct 3 ms 504 KB Output is correct
44 Correct 3 ms 504 KB Output is correct
45 Correct 3 ms 504 KB Output is correct
46 Correct 3 ms 504 KB Output is correct
47 Correct 3 ms 504 KB Output is correct
48 Correct 3 ms 504 KB Output is correct
49 Correct 3 ms 504 KB Output is correct
50 Correct 3 ms 504 KB Output is correct
51 Correct 3 ms 504 KB Output is correct
52 Correct 3 ms 504 KB Output is correct
53 Correct 3 ms 504 KB Output is correct
54 Correct 3 ms 504 KB Output is correct
55 Correct 3 ms 504 KB Output is correct
56 Correct 3 ms 504 KB Output is correct
57 Correct 3 ms 504 KB Output is correct
58 Correct 3 ms 504 KB Output is correct
59 Correct 3 ms 504 KB Output is correct
60 Correct 3 ms 504 KB Output is correct
61 Correct 3 ms 504 KB Output is correct
62 Correct 3 ms 504 KB Output is correct
63 Correct 3 ms 504 KB Output is correct
64 Correct 3 ms 504 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 2 ms 376 KB Output is correct
2 Correct 2 ms 376 KB Output is correct
3 Correct 2 ms 376 KB Output is correct
4 Correct 2 ms 376 KB Output is correct
5 Correct 2 ms 376 KB Output is correct
6 Correct 2 ms 380 KB Output is correct
7 Correct 2 ms 376 KB Output is correct
8 Correct 2 ms 380 KB Output is correct
9 Correct 2 ms 376 KB Output is correct
10 Correct 2 ms 376 KB Output is correct
11 Correct 2 ms 376 KB Output is correct
12 Correct 2 ms 376 KB Output is correct
13 Correct 2 ms 376 KB Output is correct
14 Correct 2 ms 376 KB Output is correct
15 Correct 2 ms 376 KB Output is correct
16 Correct 2 ms 376 KB Output is correct
17 Correct 2 ms 376 KB Output is correct
18 Correct 2 ms 376 KB Output is correct
19 Correct 2 ms 376 KB Output is correct
20 Correct 2 ms 376 KB Output is correct
21 Correct 2 ms 376 KB Output is correct
22 Correct 2 ms 376 KB Output is correct
23 Correct 2 ms 376 KB Output is correct
24 Correct 2 ms 376 KB Output is correct
25 Correct 2 ms 376 KB Output is correct
26 Correct 2 ms 380 KB Output is correct
27 Correct 2 ms 376 KB Output is correct
28 Correct 2 ms 376 KB Output is correct
29 Correct 2 ms 376 KB Output is correct
30 Correct 2 ms 376 KB Output is correct
31 Correct 2 ms 376 KB Output is correct
32 Correct 2 ms 376 KB Output is correct
33 Correct 2 ms 376 KB Output is correct
34 Correct 3 ms 504 KB Output is correct
35 Correct 3 ms 504 KB Output is correct
36 Correct 3 ms 504 KB Output is correct
37 Correct 3 ms 504 KB Output is correct
38 Correct 3 ms 504 KB Output is correct
39 Correct 3 ms 504 KB Output is correct
40 Correct 3 ms 504 KB Output is correct
41 Correct 3 ms 504 KB Output is correct
42 Correct 3 ms 504 KB Output is correct
43 Correct 3 ms 504 KB Output is correct
44 Correct 3 ms 504 KB Output is correct
45 Correct 3 ms 504 KB Output is correct
46 Correct 3 ms 504 KB Output is correct
47 Correct 3 ms 504 KB Output is correct
48 Correct 3 ms 504 KB Output is correct
49 Correct 3 ms 504 KB Output is correct
50 Correct 3 ms 504 KB Output is correct
51 Correct 3 ms 504 KB Output is correct
52 Correct 3 ms 504 KB Output is correct
53 Correct 3 ms 504 KB Output is correct
54 Correct 3 ms 504 KB Output is correct
55 Correct 3 ms 504 KB Output is correct
56 Correct 3 ms 504 KB Output is correct
57 Correct 3 ms 504 KB Output is correct
58 Correct 3 ms 504 KB Output is correct
59 Correct 3 ms 504 KB Output is correct
60 Correct 3 ms 504 KB Output is correct
61 Correct 3 ms 504 KB Output is correct
62 Correct 3 ms 504 KB Output is correct
63 Correct 3 ms 504 KB Output is correct
64 Correct 3 ms 504 KB Output is correct
65 Correct 79 ms 12412 KB Output is correct
66 Correct 96 ms 16028 KB Output is correct
67 Correct 99 ms 15216 KB Output is correct
68 Correct 101 ms 14968 KB Output is correct
69 Correct 101 ms 15048 KB Output is correct
70 Correct 100 ms 14968 KB Output is correct
71 Correct 99 ms 15216 KB Output is correct
72 Correct 98 ms 15736 KB Output is correct
73 Correct 99 ms 16056 KB Output is correct
74 Correct 102 ms 15732 KB Output is correct
75 Correct 99 ms 15864 KB Output is correct
76 Correct 100 ms 15724 KB Output is correct
77 Correct 100 ms 15940 KB Output is correct
78 Correct 99 ms 15732 KB Output is correct
79 Correct 99 ms 15560 KB Output is correct
80 Correct 99 ms 15680 KB Output is correct
81 Correct 99 ms 15732 KB Output is correct
82 Correct 101 ms 15224 KB Output is correct
83 Correct 98 ms 15480 KB Output is correct
84 Correct 100 ms 15224 KB Output is correct
85 Correct 100 ms 15284 KB Output is correct
86 Correct 98 ms 15224 KB Output is correct
87 Correct 100 ms 15208 KB Output is correct
88 Correct 99 ms 15096 KB Output is correct
89 Correct 99 ms 15172 KB Output is correct
90 Correct 100 ms 15224 KB Output is correct
91 Correct 99 ms 15116 KB Output is correct
92 Correct 97 ms 15144 KB Output is correct
93 Correct 98 ms 15208 KB Output is correct
94 Correct 98 ms 15224 KB Output is correct
95 Correct 97 ms 15224 KB Output is correct
96 Correct 99 ms 15828 KB Output is correct
97 Correct 99 ms 15852 KB Output is correct
98 Correct 101 ms 15612 KB Output is correct
99 Correct 99 ms 15840 KB Output is correct
100 Correct 99 ms 15652 KB Output is correct
101 Correct 99 ms 15772 KB Output is correct
102 Correct 103 ms 15680 KB Output is correct
103 Correct 100 ms 15748 KB Output is correct