제출 #1272027

#제출 시각아이디문제언어결과실행 시간메모리
1272027sweetwibu2k8Džumbus (COCI19_dzumbus)C++20
0 / 110
27 ms3224 KiB
#include <bits/stdc++.h> using namespace std; using ll = long long; const ll INF = (1LL<<60); int N, M; vector<ll> D; vector<vector<int>> g; struct Triple { vector<ll> dp0; // u NOT chosen: dp0[k] = min cost to have k good nodes in subtree vector<ll> dp1; // u chosen but pending (no neighbor chosen yet inside subtree): dp1[k] -> k good nodes in subtree (excluding u) vector<ll> dp2; // u chosen and connected (u counted): dp2[k] -> k good nodes in subtree (including u) }; // DFS returns Triple for subtree rooted at u (parent = p) Triple dfs(int u, int p) { Triple cur; cur.dp0 = {0}; // no good nodes, cost 0 cur.dp1 = {D[u]}; // choose u, but pending (not yet connected), cost D[u], contributes 0 good nodes so far cur.dp2 = {}; // impossible initially for (int v : g[u]) if (v != p) { Triple ch = dfs(v, u); int s0 = (int)cur.dp0.size() - 1; int s1 = (int)cur.dp1.size() - 1; int s2 = (int)cur.dp2.size() - 1; int c0 = (int)ch.dp0.size() - 1; int c1 = (int)ch.dp1.size() - 1; int c2 = (int)ch.dp2.size() - 1; int maxChild = max({c0,c1,c2,0}); int newMax = max({s0,s1,s2,0}) + maxChild + 2; // +2 for transitions that add +2 vector<ll> ndp0(newMax+1, INF), ndp1(newMax+1, INF), ndp2(newMax+1, INF); auto get = [&](const vector<ll>& v, int idx)->ll{ if (idx < 0 || idx >= (int)v.size()) return INF; return v[idx]; }; // parent NOT chosen: child can be not chosen (dp0) or child chosen+connected (dp2). for (int i = 0; i <= s0; ++i) { ll base = get(cur.dp0, i); if (base >= INF) continue; for (int j = 0; j <= max(c0, c2); ++j) { ll chCost = min(get(ch.dp0, j), get(ch.dp2, j)); if (chCost >= INF) continue; ndp0[i + j] = min(ndp0[i + j], base + chCost); } } // parent chosen but pending (dp1) // - child dp0 or dp2: parent remains pending // - child dp1: if both parent and child pending -> they connect => both counted: +2 for (int i = 0; i <= s1; ++i) { ll base = get(cur.dp1, i); if (base >= INF) continue; for (int j = 0; j <= max({c0,c1,c2}); ++j) { if (get(ch.dp0, j) < INF) ndp1[i + j] = min(ndp1[i + j], base + get(ch.dp0, j)); if (get(ch.dp2, j) < INF) ndp1[i + j] = min(ndp1[i + j], base + get(ch.dp2, j)); if (get(ch.dp1, j) < INF) { // child becomes good (+1) and parent becomes good (+1) => +2 ndp2[i + j + 2] = min(ndp2[i + j + 2], base + get(ch.dp1, j)); } } } // parent already connected (dp2) // - child dp0 or dp2: add j goods // - child dp1: child resolves by parent => child counted (+1) if (!cur.dp2.empty()) { for (int i = 0; i <= s2; ++i) { ll base = get(cur.dp2, i); if (base >= INF) continue; for (int j = 0; j <= max({c0,c1,c2}); ++j) { if (get(ch.dp0, j) < INF) ndp2[i + j] = min(ndp2[i + j], base + get(ch.dp0, j)); if (get(ch.dp2, j) < INF) ndp2[i + j] = min(ndp2[i + j], base + get(ch.dp2, j)); if (get(ch.dp1, j) < INF) ndp2[i + j + 1] = min(ndp2[i + j + 1], base + get(ch.dp1, j)); } } } // trim trailing INF auto trim = [&](vector<ll>& v){ int last = (int)v.size() - 1; while (last >= 0 && v[last] >= INF) --last; v.resize(last + 1); }; trim(ndp0); trim(ndp1); trim(ndp2); if (ndp0.empty()) ndp0 = {INF}; if (ndp1.empty()) ndp1 = {INF}; // ndp2 may be empty legitimately cur.dp0.swap(ndp0); cur.dp1.swap(ndp1); cur.dp2.swap(ndp2); } return cur; } int main(){ ios::sync_with_stdio(false); cin.tie(nullptr); cin >> N >> M; D.assign(N, 0); for (int i = 0; i < N; ++i) cin >> D[i]; g.assign(N, {}); for (int i = 0; i < M; ++i){ int a,b; cin >> a >> b; --a; --b; g[a].push_back(b); g[b].push_back(a); } int Q; cin >> Q; vector<ll> S(Q); for (int i = 0; i < Q; ++i) cin >> S[i]; vector<int> vis(N,0); // comps_best[c] = minimal cost to get c good nodes in that component vector<vector<ll>> comps_best; for (int i = 0; i < N; ++i) if (!vis[i]) { // collect component nodes vector<int> stk = {i}; vis[i] = 1; for (int idx = 0; idx < (int)stk.size(); ++idx) { int u = stk[idx]; for (int v : g[u]) if (!vis[v]) { vis[v] = 1; stk.push_back(v); } } // run tree DP with root i Triple t = dfs(i, -1); int maxc = 0; if (!t.dp0.empty()) maxc = max(maxc, (int)t.dp0.size() - 1); if (!t.dp2.empty()) maxc = max(maxc, (int)t.dp2.size() - 1); vector<ll> best(maxc + 1, INF); for (int c = 0; c <= maxc; ++c) { ll val = INF; if (c < (int)t.dp0.size()) val = min(val, t.dp0[c]); if (c < (int)t.dp2.size()) val = min(val, t.dp2[c]); best[c] = val; } if (best.empty()) best = {0}; else best[0] = min(best[0], 0LL); comps_best.push_back(best); } // global knapsack by value (number of good nodes) vector<ll> global(N+1, INF); global[0] = 0; for (auto &best : comps_best) { vector<ll> nxt(N+1, INF); int sz = (int)best.size() - 1; for (int have = 0; have <= N; ++have) { if (global[have] >= INF) continue; for (int c = 0; c <= sz; ++c) { if (best[c] >= INF) continue; if (have + c <= N) nxt[have + c] = min(nxt[have + c], global[have] + best[c]); } } global.swap(nxt); } // answer queries: for each S[i], output max v with global[v] <= S[i] for (int qi = 0; qi < Q; ++qi) { ll s = S[qi]; int ans = 0; for (int v = 0; v <= N; ++v) if (global[v] <= s) ans = v; cout << ans << '\n'; } return 0; }
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...