Submission #126701

# Submission time Handle Problem Language Result Execution time Memory
126701 2019-07-08T09:35:18 Z eriksuenderhauf Wall (CEOI14_wall) C++11
100 / 100
411 ms 24012 KB
//#pragma GCC optimize("O3")
#include <bits/stdc++.h>
#include <ext/pb_ds/assoc_container.hpp>
#include <ext/pb_ds/tree_policy.hpp>
#include <ext/rope>
#define mem(a,v) memset((a), (v), sizeof (a))
#define enl printf("\n")
#define case(t) printf("Case #%d: ", (t))
#define ni(n) scanf("%d", &(n))
#define nl(n) scanf("%lld", &(n))
#define nai(a, n) for (int i = 0; i < (n); i++) ni(a[i])
#define nal(a, n) for (int i = 0; i < (n); i++) nl(a[i])
#define pri(n) printf("%d\n", (n))
#define prl(n) printf("%lld\n", (n))
#define pii pair<int, int>
#define pil pair<int, long long>
#define pll pair<long long, long long>
#define vii vector<pii>
#define vil vector<pil>
#define vll vector<pll>
#define vi vector<int>
#define vl vector<long long>
#define pb push_back
#define mp make_pair
#define fi first
#define se second
using namespace std;
using namespace __gnu_pbds;
typedef long long ll;
typedef cc_hash_table<int,int,hash<int>> ht;
typedef tree<int,null_type,less<int>,rb_tree_tag,tree_order_statistics_node_update> oset;
const double pi = acos(-1);
const int MOD = 1e9 + 7;
const int INF = 1e9 + 7;
const int MAXN = 4e2 + 5;
const double eps = 1e-9;
int nx[4][2] = {{1, 0}, {0, 1}, {-1, 0}, {0, -1}};
int ny[4][2] = {{1, 3}, {2, 3}, {0, 2}, {0, 1}};
int a[MAXN][MAXN], w[MAXN][MAXN][2], b[MAXN][MAXN][2];
int n, m, par[MAXN][MAXN];
ll dp[MAXN][MAXN][4];

ll dijkstra(bool fl) {
	mem(dp, 0x3f);
	dp[0][0][1] = 0;
	priority_queue<pair<pll,pll>,vector<pair<pll,pll>>,greater<pair<pll,pll>>> pq;
	pq.push({{0,0},{0,1}});
	while (!pq.empty()) {
		pair<pll,pll> u = pq.top(); pq.pop();
		ll cur = u.fi.fi;
		int i = u.fi.se, j, k;
		tie(j, k) = u.se;
		if (dp[i][j][k] != cur)
			continue;
		if (fl && !(i == 0 && j == 0)) {
			if ((1 - i > (k&1) || !b[i-1+(k&1)][j][0]) && dp[i][j][k^2] > cur) {
				dp[i][j][k^2] = cur;
				pq.push({{cur, i}, {j, k^2}});
			}
			if ((1 - j > (k/2) || !b[i][j-1+(k/2)][1]) && dp[i][j][k^1] > cur) {
				dp[i][j][k^1] = cur;
				pq.push({{cur, i}, {j, k^1}});
			}
		}
		for (int l = 0; l < 4; l++) {
			int ni = i + nx[l][0], nj = j + nx[l][1];
			if (fl && ny[l][0] != k && ny[l][1] != k || ni < 0 || ni > n || nj < 0 || nj > m)
				continue;
			int nk = k ^ (fl ? (l & 1) + 1 : 0), nw = w[i - (l == 2)][j - (l == 3)][l & 1];
			if (dp[ni][nj][nk] > cur + nw) {
				dp[ni][nj][nk] = cur + nw;
				pq.push({{cur+nw,ni},{nj,nk}});
				par[ni][nj] = l;
			}
		}
	}
	return dp[0][0][2];
}

int main() {
	scanf("%d %d", &n, &m);
	for (int i = 0; i < n; i++)
		for (int j = 0; j < m; j++)
			ni(a[i][j]);
	for (int i = 0; i < 2; i++)
		for (int j = 0; j < n + i; j++)
			for (int k = 0; k < m + (1 - i); k++)
				ni(w[j][k][i]);
	dijkstra(0);
	for (int i = 0; i < n; i++) {
		for (int j = 0; j < m; j++) {
			if (!a[i][j])
				continue;
			int u = i, v = j;
			while (!(u == 0 && v == 0)) {
				int p = par[u][v];
				if (b[u - (p == 0)][v - (p == 1)][p & 1] != 0)
					break;
				b[u - (p == 0)][v - (p == 1)][p & 1] = 1;
				u -= nx[p][0];
				v -= nx[p][1];
			}
			b[i][j][0] = b[i][j][1] = b[i][j+1][0] = b[i+1][j][1] = 1;
		}
	}
	prl(dijkstra(1));
    return 0;
}

Compilation message

wall.cpp: In function 'll dijkstra(bool)':
wall.cpp:67:28: warning: suggest parentheses around '&&' within '||' [-Wparentheses]
    if (fl && ny[l][0] != k && ny[l][1] != k || ni < 0 || ni > n || nj < 0 || nj > m)
        ~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~
wall.cpp: In function 'int main()':
wall.cpp:81:7: warning: ignoring return value of 'int scanf(const char*, ...)', declared with attribute warn_unused_result [-Wunused-result]
  scanf("%d %d", &n, &m);
  ~~~~~^~~~~~~~~~~~~~~~~
wall.cpp:9:20: warning: ignoring return value of 'int scanf(const char*, ...)', declared with attribute warn_unused_result [-Wunused-result]
 #define ni(n) scanf("%d", &(n))
               ~~~~~^~~~~~~~~~~~
wall.cpp:84:4: note: in expansion of macro 'ni'
    ni(a[i][j]);
    ^~
wall.cpp:9:20: warning: ignoring return value of 'int scanf(const char*, ...)', declared with attribute warn_unused_result [-Wunused-result]
 #define ni(n) scanf("%d", &(n))
               ~~~~~^~~~~~~~~~~~
wall.cpp:88:5: note: in expansion of macro 'ni'
     ni(w[j][k][i]);
     ^~
# Verdict Execution time Memory Grader output
1 Correct 7 ms 5624 KB Output is correct
2 Correct 7 ms 5624 KB Output is correct
3 Correct 7 ms 5628 KB Output is correct
4 Correct 7 ms 5496 KB Output is correct
5 Correct 7 ms 5496 KB Output is correct
6 Correct 8 ms 5752 KB Output is correct
7 Correct 8 ms 5752 KB Output is correct
8 Correct 8 ms 5752 KB Output is correct
9 Correct 8 ms 5752 KB Output is correct
10 Correct 8 ms 5880 KB Output is correct
11 Correct 8 ms 5884 KB Output is correct
12 Correct 9 ms 5880 KB Output is correct
13 Correct 9 ms 5880 KB Output is correct
14 Correct 9 ms 5880 KB Output is correct
15 Correct 9 ms 5752 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 8 ms 5880 KB Output is correct
2 Correct 9 ms 5880 KB Output is correct
3 Correct 9 ms 5880 KB Output is correct
4 Correct 9 ms 6008 KB Output is correct
5 Correct 9 ms 5880 KB Output is correct
6 Correct 9 ms 5880 KB Output is correct
7 Correct 11 ms 5884 KB Output is correct
8 Correct 10 ms 5836 KB Output is correct
9 Correct 11 ms 5880 KB Output is correct
10 Correct 9 ms 6008 KB Output is correct
11 Correct 11 ms 5880 KB Output is correct
12 Correct 9 ms 5884 KB Output is correct
13 Correct 9 ms 5928 KB Output is correct
14 Correct 9 ms 5880 KB Output is correct
15 Correct 9 ms 6008 KB Output is correct
16 Correct 9 ms 6008 KB Output is correct
17 Correct 10 ms 6008 KB Output is correct
18 Correct 9 ms 5880 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 87 ms 8244 KB Output is correct
2 Correct 70 ms 7504 KB Output is correct
3 Correct 68 ms 7596 KB Output is correct
4 Correct 75 ms 10756 KB Output is correct
5 Correct 90 ms 9468 KB Output is correct
6 Correct 74 ms 7980 KB Output is correct
7 Correct 189 ms 10148 KB Output is correct
8 Correct 171 ms 9204 KB Output is correct
9 Correct 141 ms 9124 KB Output is correct
10 Correct 204 ms 12720 KB Output is correct
11 Correct 227 ms 15928 KB Output is correct
12 Correct 49 ms 7928 KB Output is correct
13 Correct 166 ms 9560 KB Output is correct
14 Correct 226 ms 10984 KB Output is correct
15 Correct 295 ms 10616 KB Output is correct
16 Correct 268 ms 11408 KB Output is correct
17 Correct 369 ms 17796 KB Output is correct
18 Correct 411 ms 24012 KB Output is correct
19 Correct 368 ms 14012 KB Output is correct
20 Correct 278 ms 11408 KB Output is correct