제출 #1258790

#제출 시각아이디문제언어결과실행 시간메모리
1258790proofyIntergalactic ship (IZhO19_xorsum)C++20
36 / 100
1545 ms327680 KiB
#include <bits/stdc++.h> using namespace std; #define ll long long template <typename T> T inverse(T a, T m) { T u = 0, v = 1; while (a != 0) { T t = m / a; m -= t * a; swap(a, m); u -= t * v; swap(u, v); } assert(m == 1); return u; } template <typename T> class Modular { public: using Type = typename decay<decltype(T::value)>::type; constexpr Modular() : value() {} template <typename U> Modular(const U& x) { value = normalize(x); } template <typename U> static Type normalize(const U& x) { Type v; if (-mod() <= x && x < mod()) v = static_cast<Type>(x); else v = static_cast<Type>(x % mod()); if (v < 0) v += mod(); return v; } const Type& operator()() const { return value; } template <typename U> explicit operator U() const { return static_cast<U>(value); } constexpr static Type mod() { return T::value; } Modular& operator+=(const Modular& other) { value += other.value; value -= (value >= mod()) * mod(); return *this; } Modular& operator-=(const Modular& other) { value -= other.value; value += (value < 0) * mod(); return *this; } template <typename U> Modular& operator+=(const U& other) { return *this += Modular(other); } template <typename U> Modular& operator-=(const U& other) { return *this -= Modular(other); } Modular& operator++() { return *this += 1; } Modular& operator--() { return *this -= 1; } Modular operator++(int) { Modular result(*this); *this += 1; return result; } Modular operator--(int) { Modular result(*this); *this -= 1; return result; } Modular operator-() const { return Modular(-value); } template <typename U = T> typename enable_if<is_same<typename Modular<U>::Type, int>::value, Modular>::type& operator*=(const Modular& rhs) { value = normalize(static_cast<int64_t>(value) * static_cast<int64_t>(rhs.value)); return *this; } template <typename U = T> typename enable_if<is_same<typename Modular<U>::Type, int64_t>::value, Modular>::type& operator*=(const Modular& rhs) { int64_t q = int64_t(static_cast<long double>(value) * rhs.value / mod()); value = normalize(value * rhs.value - q * mod()); return *this; } template <typename U = T> typename enable_if<!is_integral<typename Modular<U>::Type>::value, Modular>::type& operator*=(const Modular& rhs) { value = normalize(value * rhs.value); return *this; } Modular& operator/=(const Modular& other) { return *this *= Modular(inverse(other.value, mod())); } friend const Type& abs(const Modular& x) { return x.value; } template <typename U> friend bool operator==(const Modular<U>& lhs, const Modular<U>& rhs); template <typename U> friend bool operator<(const Modular<U>& lhs, const Modular<U>& rhs); template <typename V, typename U> friend V& operator>>(V& stream, Modular<U>& number); private: Type value; }; template <typename T> bool operator==(const Modular<T>& lhs, const Modular<T>& rhs) { return lhs.value == rhs.value; } template <typename T, typename U> bool operator==(const Modular<T>& lhs, U rhs) { return lhs == Modular<T>(rhs); } template <typename T, typename U> bool operator==(U lhs, const Modular<T>& rhs) { return Modular<T>(lhs) == rhs; } template <typename T> bool operator!=(const Modular<T>& lhs, const Modular<T>& rhs) { return !(lhs == rhs); } template <typename T, typename U> bool operator!=(const Modular<T>& lhs, U rhs) { return !(lhs == rhs); } template <typename T, typename U> bool operator!=(U lhs, const Modular<T>& rhs) { return !(lhs == rhs); } template <typename T> bool operator<(const Modular<T>& lhs, const Modular<T>& rhs) { return lhs.value < rhs.value; } template <typename T> Modular<T> operator+(const Modular<T>& lhs, const Modular<T>& rhs) { return Modular<T>(lhs) += rhs; } template <typename T, typename U> Modular<T> operator+(const Modular<T>& lhs, U rhs) { return Modular<T>(lhs) += rhs; } template <typename T, typename U> Modular<T> operator+(U lhs, const Modular<T>& rhs) { return Modular<T>(lhs) += rhs; } template <typename T> Modular<T> operator-(const Modular<T>& lhs, const Modular<T>& rhs) { return Modular<T>(lhs) -= rhs; } template <typename T, typename U> Modular<T> operator-(const Modular<T>& lhs, U rhs) { return Modular<T>(lhs) -= rhs; } template <typename T, typename U> Modular<T> operator-(U lhs, const Modular<T>& rhs) { return Modular<T>(lhs) -= rhs; } template <typename T> Modular<T> operator*(const Modular<T>& lhs, const Modular<T>& rhs) { return Modular<T>(lhs) *= rhs; } template <typename T, typename U> Modular<T> operator*(const Modular<T>& lhs, U rhs) { return Modular<T>(lhs) *= rhs; } template <typename T, typename U> Modular<T> operator*(U lhs, const Modular<T>& rhs) { return Modular<T>(lhs) *= rhs; } template <typename T> Modular<T> operator/(const Modular<T>& lhs, const Modular<T>& rhs) { return Modular<T>(lhs) /= rhs; } template <typename T, typename U> Modular<T> operator/(const Modular<T>& lhs, U rhs) { return Modular<T>(lhs) /= rhs; } template <typename T, typename U> Modular<T> operator/(U lhs, const Modular<T>& rhs) { return Modular<T>(lhs) /= rhs; } template<typename T, typename U> Modular<T> power(const Modular<T>& a, const U& b) { assert(b >= 0); Modular<T> x = a, res = 1; U p = b; while (p > 0) { if (p & 1) res *= x; x *= x; p >>= 1; } return res; } template <typename T> bool IsZero(const Modular<T>& number) { return number() == 0; } template <typename T> string to_string(const Modular<T>& number) { return to_string(number()); } // U == std::ostream? but done this way because of fastoutput template <typename U, typename T> U& operator<<(U& stream, const Modular<T>& number) { return stream << number(); } // U == std::istream? but done this way because of fastinput template <typename U, typename T> U& operator>>(U& stream, Modular<T>& number) { typename common_type<typename Modular<T>::Type, int64_t>::type x; stream >> x; number.value = Modular<T>::normalize(x); return stream; } constexpr int md = 1e9 + 7; using Mint = Modular<std::integral_constant<decay<decltype(md)>::type, md>>; const int N = 1012; const int M = 100123; int a[N], n, q; tuple<int, int, int> Q[M]; void take_input() { cin >> n; for (int i = 1; i <= n; i++) cin >> a[i]; cin >> q; for (int i = 1; i <= q; i++) { auto& [l, r, x] = Q[i]; cin >> l >> r >> x; } } void step1() { take_input(); } int F[7][7][N][N]; void calculate_F() { for (int s = 0; s < 7; s++) for (int t = 0; t < 7; t++) { for (int i = 1; i <= q; i++) { auto [l, r, x] = Q[i]; int bit_s = (x >> s) & 1; int bit_t = (x >> t) & 1; if (bit_s && bit_t) F[s][t][l][r] += 1; } for (int x = 1; x <= n; x++) for (int y = n; y >= 1; --y) F[s][t][x][y] += F[s][t][x - 1][y] + F[s][t][x][y + 1] - F[s][t][x - 1][y + 1]; } } void step2() { calculate_F(); } Mint pow2[N + N]; void calculate_pow2() { pow2[0] = 1; for (int i = 1; i < N + N; i++) pow2[i] = pow2[i - 1] + pow2[i - 1]; } void step3() { calculate_pow2(); } Mint A[4]; int C[4]; int Span[4]; void calculate_A() { vector<int> v; v.reserve(4); for (int i = 0; i < 4; i++) if (C[i]) v.push_back(i); vector<int> basis(2); int basis_size = 0; for (int u : v) for (int j = 0; j < 2; j++) if ((1 << j) & u) { if (!basis[j]) { basis[j] = u; basis_size += 1; break; } u ^= basis[j]; } memset(Span, 0, sizeof(Span)); // contains span for (int s = 0; s < (1 << 2); s++) { int xoring = 0; for (int j = 0; j < 2; j++) if ((1 << j) & s) xoring ^= basis[j]; Span[xoring] = 1; } int total = C[0] + C[1] + C[2] + C[3]; for (int i = 0; i < 4; i++) A[i] = (Span[i] ? pow2[total - basis_size] : 0); } // Observe that G[s][x] = F[s][s][x][x] Mint H[7][7][N][N]; int convert(int x, int y) { return (x << 1) | y; } void calculate_H() { for (int s = 0; s < 7; s++) for (int t = 0; t < 7; t++) for (int x = 1; x <= n; x++) for (int y = 1; y <= n; y++) { int F_val = F[s][t][min(x, y)][max(x, y)]; if (s == t && x == y) { if ((a[x] >> s) & 1) { if (F_val) H[s][t][x][y] = pow2[q - 1]; else H[s][t][x][y] = pow2[q]; } else { H[s][t][x][y] = 0; if (F_val) H[s][t][x][y] = pow2[q - 1]; } continue; } A[0] = A[1] = A[2] = A[3] = 0; C[3] = F_val; C[2] = F[s][s][x][x] - C[3]; C[1] = F[t][t][y][y] - C[3]; C[0] = q - C[1] - C[2] - C[3]; calculate_A(); int bx = (a[x] >> s) & 1; int by = (a[y] >> t) & 1; H[s][t][x][y] = A[convert(1 - bx, 1 - by)]; } } void step4() { calculate_H(); } Mint J[7][7][N][N]; void calculate_J() { for (int s = 0; s < 7; s++) for (int t = 0; t < 7; t++) { for (int i = 1; i <= n; i++) for (int j = 1; j <= n; j++) { J[s][t][i][j] = pow2[s + t] * H[s][t][i][j]; J[s][t][i][j] += J[s][t][i - 1][j] + J[s][t][i][j - 1] - J[s][t][i - 1][j - 1]; } } } void step5() { calculate_J(); } int main() { ios::sync_with_stdio(0); cin.tie(0); for (auto func : {step1, step2, step3, step4, step5}) { func(); } Mint X = 0; for (int s = 0; s < 7; s++) for (int t = 0; t < 7; t++) for (int i = 1; i <= n; i++) X += J[s][t][i][i]; Mint Y = 0; for (int s = 0; s < 7; s++) for (int t = 0; t < 7; t++) for (int i = 1; i <= n; i++) for (int j = 1; j <= n; j++) Y += J[s][t][i][j]; cout << Mint(n + 1) * X - Y << "\n"; }
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...