답안 #125838

# 제출 시각 아이디 문제 언어 결과 실행 시간 메모리
125838 2019-07-06T12:45:47 Z eriksuenderhauf Nuclearia (CEOI15_nuclearia) C++11
92 / 100
1000 ms 740000 KB
//#pragma GCC optimize("O3")
#include <bits/stdc++.h>
#include <ext/pb_ds/assoc_container.hpp>
#include <ext/pb_ds/tree_policy.hpp>
#include <ext/rope>
#define mem(a,v) memset((a), (v), sizeof (a))
#define enl printf("\n")
#define case(t) printf("Case #%d: ", (t))
#define ni(n) scanf("%d", &(n))
#define nl(n) scanf("%lld", &(n))
#define nai(a, n) for (int i = 0; i < (n); i++) ni(a[i])
#define nal(a, n) for (int i = 0; i < (n); i++) nl(a[i])
#define pri(n) printf("%d\n", (n))
#define prl(n) printf("%lld\n", (n))
#define pii pair<int, int>
#define pil pair<int, long long>
#define pll pair<long long, long long>
#define vii vector<pii>
#define vil vector<pil>
#define vll vector<pll>
#define vi vector<int>
#define vl vector<long long>
#define pb push_back
#define mp make_pair
#define fi first
#define se second
using namespace std;
using namespace __gnu_pbds;
typedef long long ll;
typedef cc_hash_table<int,int,hash<int>> ht;
typedef tree<int,null_type,less<int>,rb_tree_tag,tree_order_statistics_node_update> oset;
const double pi = acos(-1);
const int MOD = 1e9 + 7;
const int INF = 1e9 + 7;
const int MAXN = 1e6 + 5;
const double eps = 1e-9;
vector<vl> off, sl, sm, d1, d2;
vector<vl> offC, slC, offSlC, slSlC;
 
int main() {
	int w, h, n;
	scanf("%d %d %d", &w, &h, &n);
	off.resize(h+1); sl.resize(h+1), sm.resize(h+1);
	d1.resize(h+3), d2.resize(h+3), offC.resize(h+3), slC.resize(h+3);
	offSlC.resize(h+3), slSlC.resize(h+3);
	for (int i = 0; i <= h; i++)
		off[i].resize(w+3), sl[i].resize(w+3), sm[i].resize(w+3);
	for (int i = 0; i <= h+2; i++) {
		d1[i].resize(w+3), d2[i].resize(w+3);
		offC[i].resize(w+3), slC[i].resize(w+3);
		offSlC[i].resize(w+3), slSlC[i].resize(w+3);
	}
	for (int i = 0; i < n; i++) {
		ll x, y, a, b;
		scanf("%lld %lld %lld %lld", &x, &y, &a, &b);
		ll l = max(1ll, x - a / b), r = min((ll)w, x + a / b);
		ll c = max(1ll, y - a / b), d = min((ll)h, y + a / b);
		if (x-abs(y-c) < 1ll) {
			d1[y-x+1][2] -= b;
			offSlC[c][2] -= b;
			offSlC[y-x+1][2] += b;
			offSlC[c][l] -= b;
			offSlC[y-x+1][l] += b;
			offSlC[c][l+1] += b;
			offSlC[y-x+1][l+1] -= b;
			slSlC[y-x+1][l] -= b;
			slSlC[y-x+1][l+1] += b;
		} else {
			d1[c][x-abs(y-c)+1] -= b;
			slSlC[c][l] -= (x - abs(y-c)) * b;
			slSlC[c+1][l] += (x - abs(y-c)) * b - b;
			slSlC[c][l+1] += (x - abs(y-c)) * b;
			slSlC[c+1][l+1] -= (x - abs(y-c)) * b - b;
		}
		slSlC[y+1][l] += 2 * b;
		slSlC[y+1][l+1] -= 2 * b;
		if (x-abs(y-d) < 1ll) {
			d2[x+y-1][2] -= b;
			offSlC[x+y][2] -= b;
			offSlC[d+1][2] += b;
			offSlC[x+y][l] -= b;
			offSlC[d+1][l] += b;
			offSlC[x+y][l+1] += b;
			offSlC[d+1][l+1] -= b;
			slSlC[x+y+1][l] -= b;
			slSlC[x+y+1][l+1] += b;
		} else {
			d2[d][x-abs(y-d)+1] -= b;
			slSlC[d+1][l] += (x-abs(y-d)) * b - b;
			slSlC[d+2][l] -= (x-abs(y-d)) * b;
			slSlC[d+1][l+1] -= (x-abs(y-d)) * b - b;
			slSlC[d+2][l+1] += (x-abs(y-d)) * b;
		}
		if (x+abs(y-d) > (ll)w) {
			offSlC[w+y-x+1][r+1] -= b * w;
			offSlC[d+1][r+1] += b * w;
			offSlC[w+y-x+1][r+2] += b * w;
			offSlC[d+1][r+2] -= b * w;
			slSlC[w+y-x+1][r+1] += (ll)w * b + b;
			slSlC[w+y-x+2][r+1] -= (ll)w * b;
			slSlC[w+y-x+1][r+2] -= (ll)w * b + b;
			slSlC[w+y-x+2][r+2] += (ll)w * b;
		} else {
			d1[d+1][x+abs(y-d)+2] += b;
			slSlC[d+1][r+1] += (x+abs(y-d)) * b + b;
			slSlC[d+2][r+1] -= (x+abs(y-d)) * b;
			slSlC[d+1][r+2] -= (x+abs(y-d)) * b + b;
			slSlC[d+2][r+2] += (x+abs(y-d)) * b;
		}
		slSlC[y+1][r+1] -= 2 * b;
		slSlC[y+1][r+2] += 2 * b;
		if (x+abs(y-c) > (ll)w) {
			offSlC[c][r+1] -= b * w;
			offSlC[x+y-w][r+1] += b * w;
			offSlC[c][r+2] += b * w;
			offSlC[x+y-w][r+2] -= b * w;
			slSlC[x+y-w][r+1] -= (ll)w * b;
			slSlC[x+y-w+1][r+1] += (ll)w*b + b;
			slSlC[x+y-w][r+2] += (ll)w * b;
			slSlC[x+y-w+1][r+2] -= (ll)w*b + b;
		} else {
			d2[c-1][x+abs(y-c)+2] += b;
			slSlC[c][r+1] -= (x+abs(y-c)) * b;
			slSlC[c+1][r+1] += (x+abs(y-c)) * b + b;
			slSlC[c][r+2] += (x+abs(y-c)) * b;
			slSlC[c+1][r+2] -= (x+abs(y-c)) * b + b;
		}
		offC[c][l] += a;
		offC[d+1][l] -= a;
		offC[c][r+1] -= a;
		offC[d+1][r+1] += a;
		slC[c][l] -= abs(y-c) * b;
		slC[c+1][l] += abs(y-c) * b + b;
		slC[y+1][l] -= 2 * b;
		slC[d+1][l] += abs(y-d) * b + b;
		slC[d+2][l] -= abs(y-d) * b;
		slC[c][r+1] += abs(y-c) * b;
		slC[c+1][r+1] -= abs(y-c) * b + b;
		slC[y+1][r+1] += 2 * b;
		slC[d+1][r+1] -= abs(y-d) * b + b;
		slC[d+2][r+1] += abs(y-d) * b;
		offSlC[c][l] += b * l;
		offSlC[d+1][l] -= b * l;
		offSlC[c][l+1] -= b * (l-1);
		offSlC[d+1][l+1] += b * (l-1);
		offSlC[c][r+1] += b * (r+1);
		offSlC[d+1][r+1] -= b * (r+1);
		offSlC[c][r+2] -= b * r;
		offSlC[d+1][r+2] += b * r;
	}
	for (int i = 1; i <= h; i++) {
		for (int j = 1; j <= w; j++) {
			d1[i][j] += d1[i-1][j-1];
			offC[i][j] += offC[i-1][j];
			slC[i][j] += slC[i-1][j];
			offSlC[i][j] += offSlC[i-1][j];
			slSlC[i][j] += slSlC[i-1][j];
		}
	}
	for (int i = 1; i <= h; i++)
		for (int j = 1; j <= w; j++) {
			slC[i][j] += slC[i-1][j];
			slSlC[i][j] += slSlC[i-1][j];
		}
	for (int i = h-1; i > 0; i--)
		for (int j = 1; j <= w; j++)
			d2[i][j] += d2[i+1][j-1];
	for (int i = 1; i <= h; i++) {
		for (int j = 1; j <= w; j++) {
			sl[i][j] += d1[i][j] + d2[i][j] + offSlC[i][j] + slSlC[i][j];
			off[i][j] += offC[i][j] + slC[i][j];
			off[i][j] += off[i][j-1];
			sl[i][j] += sl[i][j-1];
		}
		for (int j = 1; j <= w; j++)
			sl[i][j] += sl[i][j-1];
		for (int j = 1; j <= w; j++)
			sm[i][j] = sm[i-1][j] + sm[i][j-1] - sm[i-1][j-1] + sl[i][j] + off[i][j];
	}
	int q; ni(q);
	while (q--) {
		ll x1, y1, x2, y2;
		scanf("%lld %lld %lld %lld", &x1, &y1, &x2, &y2);
		ll ans = sm[y2][x2] - sm[y1-1][x2] - sm[y2][x1-1] + sm[y1-1][x1-1];
		x1 = (x2-x1+1) * (y2-y1+1);
		if ((ans % x1) * 2 >= x1)
			prl(ans / x1 + 1);
		else
			prl(ans / x1);
	}
    return 0;
}

Compilation message

nuclearia.cpp: In function 'int main()':
nuclearia.cpp:42:7: warning: ignoring return value of 'int scanf(const char*, ...)', declared with attribute warn_unused_result [-Wunused-result]
  scanf("%d %d %d", &w, &h, &n);
  ~~~~~^~~~~~~~~~~~~~~~~~~~~~~~
nuclearia.cpp:55:8: warning: ignoring return value of 'int scanf(const char*, ...)', declared with attribute warn_unused_result [-Wunused-result]
   scanf("%lld %lld %lld %lld", &x, &y, &a, &b);
   ~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
nuclearia.cpp:9:20: warning: ignoring return value of 'int scanf(const char*, ...)', declared with attribute warn_unused_result [-Wunused-result]
 #define ni(n) scanf("%d", &(n))
               ~~~~~^~~~~~~~~~~~
nuclearia.cpp:180:9: note: in expansion of macro 'ni'
  int q; ni(q);
         ^~
nuclearia.cpp:183:8: warning: ignoring return value of 'int scanf(const char*, ...)', declared with attribute warn_unused_result [-Wunused-result]
   scanf("%lld %lld %lld %lld", &x1, &y1, &x2, &y2);
   ~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# 결과 실행 시간 메모리 Grader output
1 Correct 546 ms 587392 KB Output is correct
2 Correct 98 ms 2680 KB Output is correct
3 Correct 88 ms 2296 KB Output is correct
# 결과 실행 시간 메모리 Grader output
1 Correct 550 ms 587424 KB Output is correct
2 Correct 98 ms 2680 KB Output is correct
# 결과 실행 시간 메모리 Grader output
1 Correct 209 ms 177528 KB Output is correct
2 Correct 96 ms 2756 KB Output is correct
# 결과 실행 시간 메모리 Grader output
1 Correct 453 ms 238108 KB Output is correct
2 Correct 99 ms 2800 KB Output is correct
# 결과 실행 시간 메모리 Grader output
1 Correct 698 ms 589716 KB Output is correct
2 Correct 105 ms 3276 KB Output is correct
# 결과 실행 시간 메모리 Grader output
1 Correct 378 ms 237816 KB Output is correct
2 Correct 99 ms 2808 KB Output is correct
# 결과 실행 시간 메모리 Grader output
1 Correct 381 ms 181436 KB Output is correct
2 Correct 103 ms 2936 KB Output is correct
# 결과 실행 시간 메모리 Grader output
1 Correct 306 ms 155460 KB Output is correct
2 Correct 95 ms 2680 KB Output is correct
# 결과 실행 시간 메모리 Grader output
1 Correct 927 ms 589852 KB Output is correct
# 결과 실행 시간 메모리 Grader output
1 Correct 940 ms 589824 KB Output is correct
# 결과 실행 시간 메모리 Grader output
1 Correct 618 ms 181596 KB Output is correct
2 Correct 695 ms 187132 KB Output is correct
# 결과 실행 시간 메모리 Grader output
1 Correct 632 ms 183416 KB Output is correct
2 Correct 654 ms 188536 KB Output is correct
# 결과 실행 시간 메모리 Grader output
1 Correct 683 ms 196200 KB Output is correct
2 Correct 503 ms 187500 KB Output is correct
# 결과 실행 시간 메모리 Grader output
1 Correct 509 ms 183516 KB Output is correct
2 Execution timed out 1126 ms 740000 KB Time limit exceeded