This submission is migrated from previous version of oj.uz, which used different machine for grading. This submission may have different result if resubmitted.
#!/usr/bin/env python3
import sys
from collections import deque
from itertools import chain, combinations
def getdegeneracyordering(graph, n, k):
# O(kn)
active = [True] * n
nsize = [len(graph[i]) for i in range(n)]
tinydegs = [[] for i in range(k)]
tinydegscount = 0
for i in range(n):
if nsize[i] < k:
tinydegs[nsize[i]].append(i)
tinydegscount += 1
degorder = [-1] * n
degorder_i = []
mindeg = min(nsize)
while tinydegscount > 0:
# print(tinydegscount, mindeg, tinydegs)
while len(tinydegs[mindeg]) == 0:
mindeg += 1
node = tinydegs[mindeg].pop()
if not active[node]: continue
## This is node to put in ordering!
degorder[node] = len(degorder_i)
degorder_i.append(node)
active[node] = False
tinydegscount -= 1
# Update state for neighbours
for nb in graph[node]:
if not active[nb]: continue
nsize[nb] -= 1
if nsize[nb] < k:
tinydegs[nsize[nb]].append(nb)
mindeg = min(mindeg, nsize[nb])
if nsize[nb] == k-1:
tinydegscount += 1
return degorder, degorder_i
def powerset(s):
return chain.from_iterable(combinations(s, r) for r in range(len(s)+1))
def getmaxclique(node, graph):
# returns largest clique of graph (active part) which contains node.
# O(2^k * k^2 + k^2) (assuming adjecency lists < k)
nbhood = []
rev = {}
for i, u in enumerate(graph[node]):
rev[u] = i
nbhood.append(u)
# Make adjacency matrix
adjmatrix = [[0] * len(nbhood) for i in range(len(nbhood))]
for u in rev:
for v in graph[u]:
if v in rev:
adjmatrix[rev[u]][rev[v]] = adjmatrix[rev[v]][rev[u]] = 1
# Try all subsets, check if it is a clique.
def isclique(myset):
for i, u in enumerate(myset):
for j in range(i+1, len(myset)):
if adjmatrix[u][myset[j]] == 0:
return False
return True
maxclique = 0
for myset in powerset(list(range(len(nbhood)))):
if isclique(myset):
maxclique = max(maxclique, len(myset))
return maxclique + 1
def poldev():
# Step 0: Read input
n, k = map(int, sys.stdin.readline().split())
graph = []
for i in range(n):
graph.append(list(map(int, sys.stdin.readline().split()[1:])))
# Step 1: Find degeneracy order O(kn)
degorder, degorder_i = getdegeneracyordering(graph, n, k)
# Step 2: Trim graph, such that edges only point forwards in degen. order
# Adjecency list of each node is now < k
for node in range(n):
futureneighs = []
for nb in graph[node]:
if degorder[nb] > degorder[node]:
futureneighs.append(nb)
assert(len(futureneighs) < k)
graph[node] = futureneighs
# Step 3: Swipe through in degeneracy ordering: What is largest clique
# of vertex i, using only future vertices? O(n * 2^k * k^2)
maxclique = 1
for node in degorder_i:
maxclique = max(maxclique, getmaxclique(node, graph))
return maxclique
print(poldev())
# | Verdict | Execution time | Memory | Grader output |
---|
Fetching results... |
# | Verdict | Execution time | Memory | Grader output |
---|
Fetching results... |
# | Verdict | Execution time | Memory | Grader output |
---|
Fetching results... |
# | Verdict | Execution time | Memory | Grader output |
---|
Fetching results... |
# | Verdict | Execution time | Memory | Grader output |
---|
Fetching results... |