제출 #1236117

#제출 시각아이디문제언어결과실행 시간메모리
1236117asdfgraceFire (BOI24_fire)C++20
13 / 100
2098 ms6076 KiB
#include <bits/stdc++.h> using namespace std; #define dbg(x) //x #define prt(x) dbg(cerr << x) #define pv(x) dbg(cerr << #x << " = " << x << '\n') #define pv2(x) dbg(cerr << #x << " = " << x.first << ',' << x.second << '\n') #define parr(x) dbg(prt(#x << " = { "); for (auto y : x) prt(y << ' '); prt("}\n");) #define parr2(x) dbg(prt(#x << " = { "); for (auto [y, z] : x) prt(y << ',' << z << " "); prt("}\n");) #define parr2d(x) dbg(prt(#x << ":\n"); for (auto arr : x) {parr(arr);} prt('\n')); #define parr2d2(x) dbg(prt(#x << ":\n"); for (auto arr : x) {parr2(arr);} prt('\n')); /* at most 1 is going to work overnight n^3 sol: dp[l][r] = minimum number from the left bound of l's to the right bound of r's how will we sort them - just by left bound? or i guess you start at a left bound and iterate over the right bounds are we gonna assume we're using l and r? not necessarily sometimes the overlap and you can just use 1 instead if r ends before l ends then you want to find the bounds for each r-value which i guess you can do by sorting or smth is 5000^2log too much for binary search & sorting if no one works overnight then we're also confined to a single possible starting point at 0 so if we can do that in n^2log we can do this in nlog if all the intervals have the same length then ??? also if B is entirely contained in A then you would never ever use A */ int main() { ios::sync_with_stdio(0); cin.tie(0); int n, m; cin >> n >> m; function<int(int, int)> dist = [&] (int x, int y) { if (y > x) return y - x; return y + m - x; }; vector<array<int, 2>> a(n); bool good = true; for (int i = 0; i < n; i++) { cin >> a[i][0] >> a[i][1]; if (a[i][1] == 0) a[i][1] = m; if (a[i][1] < a[i][0]) good = false; } sort(a.begin(), a.end(), [&] (array<int, 2> a1, array<int, 2> a2) { return a1[0] < a2[0] || (a1[0] == a2[0] && dist(a1[0], a1[1]) < dist(a2[0], a2[1])); }); vector<bool> in(n, true); int mx = 0, lmx = 0; for (int i = 0; i < n; i++) { if (i < n - 1 && a[i][0] == a[i + 1][0]) { in[i] = false; continue; } if (a[i][0] < a[i][1]) { if (a[i][1] <= mx) in[i] = false; else mx = a[i][1]; } else { mx = m; if (a[i][1] <= lmx) in[i] = false; else lmx = a[i][1]; } } for (int i = 0; i < n; i++) { if (a[i][0] < a[i][1] && a[i][1] <= lmx) in[i] = false; } vector<array<int, 2>> na; for (int i = 0; i < n; i++) { if (in[i]) na.push_back(a[i]); } a = na; n = (int) a.size(); parr2d(a); if (good && a[0][0] != 0) { cout << -1 << '\n'; } else { // note: this means you have to use a[i] int ans = 1e9; for (int i = 0; i < (good ? 1 : n); i++) { pv(i); vector<int> dp(n); // dp[j] = min segments needed so that i is 1st & j is lst dp[0] = 1; vector<int> st(1, 0); // suffix minima int it = 0; // EARLIEST position so that the end of a[it] reaches the beginning of a[j] int pos = 0; // EARLIEST index in st so that st[pos] >= it for (int j = 1, k = (i + 1) % n; j < n; j++, k = (k == n - 1 ? 0 : k + 1)) { while (dist(a[i][0], a[(i + it) % n][1]) < dist(a[i][0], a[k][0])) it++; while (pos < st.size() && st[pos] < it) pos++; if (pos < st.size()) { dp[j] = dp[st[pos]] + 1; while (dp[st.back()] >= dp[j]) st.pop_back(); st.push_back(j); } else { dp[j] = 1e9; } if (dist(a[i][0], a[k][1]) == m || dist(a[i][0], a[k][1]) <= dist(a[i][0], a[i][1])) { ans = min(ans, dp[j]); } } parr(dp); } cout << (ans == 1e9 ? -1 : ans) << '\n'; } }
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...