Submission #1235906

#TimeUsernameProblemLanguageResultExecution timeMemory
1235906asdfgraceFire (BOI24_fire)C++20
0 / 100
2094 ms640 KiB
#include <bits/stdc++.h> using namespace std; #define dbg(x) //x #define prt(x) dbg(cerr << x) #define pv(x) dbg(cerr << #x << " = " << x << '\n') #define pv2(x) dbg(cerr << #x << " = " << x.first << ',' << x.second << '\n') #define parr(x) dbg(prt(#x << " = { "); for (auto y : x) prt(y << ' '); prt("}\n");) #define parr2(x) dbg(prt(#x << " = { "); for (auto [y, z] : x) prt(y << ',' << z << " "); prt("}\n");) #define parr2d(x) dbg(prt(#x << ":\n"); for (auto arr : x) {parr(arr);} prt('\n')); #define parr2d2(x) dbg(prt(#x << ":\n"); for (auto arr : x) {parr2(arr);} prt('\n')); /* at most 1 is going to work overnight n^3 sol: dp[l][r] = minimum number from the left bound of l's to the right bound of r's how will we sort them - just by left bound? or i guess you start at a left bound and iterate over the right bounds are we gonna assume we're using l and r? not necessarily sometimes the overlap and you can just use 1 instead if r ends before l ends then you want to find the bounds for each r-value which i guess you can do by sorting or smth is 5000^2log too much for binary search & sorting if no one works overnight then we're also confined to a single possible starting point at 0 so if we can do that in n^2log we can do this in nlog if all the intervals have the same length then ??? also if B is entirely contained in A then you would never ever use A */ int main() { ios::sync_with_stdio(0); cin.tie(0); int n, m; cin >> n >> m; function<int(int, int)> dist = [&] (int x, int y) { if (y > x) return y - x; return y + m - x; }; vector<array<int, 2>> a(n); bool good = true; for (int i = 0; i < n; i++) { cin >> a[i][0] >> a[i][1]; if (a[i][1] == 0) a[i][1] = m; if (a[i][1] < a[i][0]) good = false; } sort(a.begin(), a.end(), [&] (array<int, 2> a1, array<int, 2> a2) { return a1[0] < a2[0] || (a1[0] == a2[0] && dist(a1[0], a1[1]) < dist(a2[0], a2[1])); }); vector<array<int, 2>> na; for (int i = 0; i < n; i++) { if (na.size() && na.back()[0] == a[i][0]) na.pop_back(); na.push_back(a[i]); } a = na; n = (int) a.size(); parr2d(a); if (good && a[0][0] != 0) { cout << -1 << '\n'; } else { // note: this means you have to use a[i] int ans = 1e9; for (int i = 0; i < n; i++) { pv(i); vector<array<int, 3>> b(n); for (int j = 0; j < n; j++) { b[j] = {a[j][0], a[j][1], j}; } swap(b[0], b[i]); sort(b.begin() + 1, b.end(), [&] (array<int, 3> a1, array<int, 3> a2) { return dist(a[i][1], a1[1]) < dist(a[i][1], a2[1]); }); vector<int> ord(n); for (int j = 0; j < n; j++) { ord[b[j][2]] = j; } parr2d(b); vector<int> at(n); int pos = 0; for (int it = 1; it < n; it++) { int val = a[(i + it) % n][0]; pv(val); while (pos < n && dist(b[0][0], b[pos][1]) < dist(b[0][0], val)) { pv(pos); pv(dist(b[0][0], b[pos][1])); pv(dist(b[0][0], val)); pos++; } at[ord[(i + it) % n]] = pos; } parr(at); vector<int> dp(n); // dp[j] = min segments needed so that i is 1st & j is lst dp[0] = 1; vector<int> st(1, 0); // suffix minima for (int j = 1; j < n; j++) { int lb = lower_bound(st.begin(), st.end(), at[j]) - st.begin(); if (lb < st.size()) { dp[j] = dp[st[lb]] + 1; while (dp[st.back()] >= dp[j]) st.pop_back(); st.push_back(j); } else { dp[j] = 1e9; } if (dist(b[0][0], b[j][1]) >= m) { pv(j); ans = min(ans, dp[j]); } } parr(dp); } cout << (ans == 1e9 ? -1 : ans) << '\n'; } }
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...