#include "split.h"
#include <bits/stdc++.h>
using namespace std;
using i32 = int;
#define int long long
#define len(x) (int)(x.size())
#define inf 1000'000'000'000'000'000LL
#define all(x) x.begin(), x.end()
#define low_bit(x) (x & (-x))
template<typename T>
using vec = vector<T>;
vec<i32> solve_for_tree(int n, int a, int b, int c, vec<vec<int>> g) {
vec<i32> ans(n, 3);
vec<int> sizes(n);
vec<pair<i32, i32>> z = {{a, 1},
{b, 2},
{c, 3}};
sort(all(z));
a = z[0].first;
int ax = z[0].second;
b = z[1].first;
int bx = z[1].second;
int cx = z[2].second;
std::fill(ans.begin(), ans.end(), cx);
int splitter = -1;
int ps;
vec<int> SZ = {-1, -1};
vec<int> Tid = {-1, -1};
vec<bool> used1(n, false);
function<void(int, int)> calc_sizes = [&](int v, int p) {
sizes[v] = 1;
used1[v] = true;
for (auto u: g[v]) {
if (u == p) continue;
if (used1[u]) continue;
calc_sizes(u, v);
sizes[v] += sizes[u];
}
if (sizes[v] >= a and (n - sizes[v]) >= b) {
splitter = v;
SZ[0] = a;
SZ[1] = b;
ps = p;
Tid[0] = ax;
Tid[1] = bx;
}
if (sizes[v] >= b and (n - sizes[v]) >= a) {
splitter = v;
SZ[0] = b;
SZ[1] = a;
ps = p;
Tid[0] = bx;
Tid[1] = ax;
}
};
calc_sizes(0, -1);
if (splitter == -1) {
return vec<i32>(0);
}
int need = 0;
int T = 0;
vec<bool> used(n, false);
function<void(int, int)> choose = [&](int v, int p) {
if (need == 0)
return;
if (used[v]) return;
used[v] = true;
need--;
ans[v] = T;
for (auto u: g[v]) {
if (u == p) continue;
choose(u, v);
}
};
need = SZ[0];
T = Tid[0];
choose(splitter, ps);
need = SZ[1];
T = Tid[1];
choose(0, -1);
return ans;
}
struct DSU {
public:
DSU() : _n(0) {}
explicit DSU(int n) : _n(n), parent_or_size(n, -1) {}
int unite(int a, int b) {
assert(0 <= a && a < _n);
assert(0 <= b && b < _n);
int x = leader(a), y = leader(b);
if (x == y) return x;
if (-parent_or_size[x] < -parent_or_size[y]) std::swap(x, y);
parent_or_size[x] += parent_or_size[y];
parent_or_size[y] = x;
return x;
}
bool one(int a, int b) {
assert(0 <= a && a < _n);
assert(0 <= b && b < _n);
return leader(a) == leader(b);
}
int leader(int a) {
assert(0 <= a && a < _n);
if (parent_or_size[a] < 0) return a;
return parent_or_size[a] = leader(parent_or_size[a]);
}
int size(int a) {
assert(0 <= a && a < _n);
return -parent_or_size[leader(a)];
}
std::vector<std::vector<int>> groups() {
std::vector<int> leader_buf(_n), group_size(_n);
for (int i = 0; i < _n; i++) {
leader_buf[i] = leader(i);
group_size[leader_buf[i]]++;
}
std::vector<std::vector<int>> result(_n);
for (int i = 0; i < _n; i++) {
result[i].reserve(group_size[i]);
}
for (int i = 0; i < _n; i++) {
result[leader_buf[i]].push_back(i);
}
result.erase(
std::remove_if(result.begin(), result.end(),
[&](const std::vector<int> &v) { return v.empty(); }),
result.end());
return result;
}
private:
int _n;
// root node: -1 * component size
// otherwise: parent
std::vector<int> parent_or_size;
};
vector<i32> find_split(i32 n, i32 a, i32 b, i32 c, vector<i32> p, vector<i32> q) {
for (int i = 0; i < n; i++) {
DSU dsu(n);
vec<vec<int>> g(n);
for (int j = 0; j < len(p); j++) {
if (p[j] == i or q[j] == i) continue;
if (dsu.one(p[j], q[j])) continue;
dsu.unite(p[j], q[j]);
g[p[j]].push_back(q[j]);
g[q[j]].push_back(p[j]);
}
vec<int> ord(len(p));
iota(all(ord), 0);
shuffle(all(ord), std::mt19937(std::random_device()()));
for (int j: ord) {
if (dsu.one(p[j], q[j])) continue;
dsu.unite(p[j], q[j]);
g[p[j]].push_back(q[j]);
g[q[j]].push_back(p[j]);
}
vec<i32> res = solve_for_tree(n, a, b, c, g);
if (!res.empty())
return res;
}
return vec<i32>(n, 0);
// vec<vec<int>> g(n);
// for (int i = 0; i < len(p); i++) {
// g[p[i]].push_back(q[i]);
// g[q[i]].push_back(p[i]);
// }
//
// return solve_for_tree(n, a, b, c, g);
}
# | Verdict | Execution time | Memory | Grader output |
---|
Fetching results... |
# | Verdict | Execution time | Memory | Grader output |
---|
Fetching results... |
# | Verdict | Execution time | Memory | Grader output |
---|
Fetching results... |
# | Verdict | Execution time | Memory | Grader output |
---|
Fetching results... |
# | Verdict | Execution time | Memory | Grader output |
---|
Fetching results... |