Submission #120979

# Submission time Handle Problem Language Result Execution time Memory
120979 2019-06-25T20:54:32 Z thecodingwizard Tropical Garden (IOI11_garden) C++11
100 / 100
1564 ms 23784 KB
/*
 * Basically editorial solution
 *
 * Construct 2*n nodes, if you are at a node i and you have just traveled the most beautiful path, and if you
 * are at node i and you have not traveled the most beautiful path. Each node has exactly one outgoing edge.
 *
 * Notice that you will eventually have to reach a cycle. Hence, determine the cycle length of P, and
 * then from each possible starting node use DP to simulate traveling from that node until you reach a cycle.
 */

#include "garden.h"
#include "gardenlib.h"

 #pragma GCC optimize ("O3")
 #pragma GCC target ("sse4")

#include <bits/stdc++.h>

using namespace std;

template<class T> using min_heap = priority_queue<T, vector<T>, greater<T>>;

#define FOR(i, a, b) for (int i=a; i<(b); i++)
#define F0R(i, a) for (int i=0; i<(a); i++)
#define F0R1(i, a) for (int i=1; i<=(a); i++)
#define FORd(i, a, b) for (int i = (b)-1; i >= a; i--)
#define F0Rd(i, a) for (int i = (a)-1; i >= 0; i--)
#define trav(a, x) for (auto& a : x)
#define MIN(a, b) a = min(a, b)
#define MAX(a, b) a = max(a, b)

#define INF 1000000010
#define LL_INF 4500000000000000000LL
#define LSOne(S) (S & (-S))
#define EPS 1e-9
#define pA first
#define pB second
#define mp make_pair
#define pb push_back
#define PI acos(-1.0)
// #define MOD (int)(2e+9+11)
#define MOD (int)(1e+9+7)
#define SET(vec, val, size) for (int i = 0; i < size; i++) vec[i] = val;
#define SET2D(arr, val, dim1, dim2) F0R(i, dim1) F0R(j, dim2) arr[i][j] = val;
#define SET3D(arr, val, dim1, dim2, dim3) F0R(i, dim1) F0R(j, dim2) F0R(k, dim3) arr[i][j][k] = val;
#define SET4D(arr, val, dim1, dim2, dim3, dim4) F0R(i, dim1) F0R(j, dim2) F0R(k, dim3) F0R(l, dim4) arr[i][j][k][l] = val;

#define lb lower_bound
#define ub upper_bound
#define sz(x) (int)x.size()
#define beg(x) x.begin()
#define en(x) x.end()
#define all(x) beg(x), en(x)
#define resz resize
#define SORT(vec) sort(all(vec))
#define RSORT(vec) sort(vec.rbegin(),vec.rend())

typedef long long ll;
typedef long double ld;
typedef pair<int, int> ii;
typedef pair<int, ii> iii;
typedef pair<ll, ll> pll;
typedef vector<int> vi;
typedef vector<ii> vii;
typedef vector<iii> viii;
typedef vector<ll> vl;

// Source: Benq (https://github.com/bqi343/USACO) [Modified]
namespace input {
    template<class T> void re(complex<T>& x);
    template<class T1, class T2> void re(pair<T1,T2>& p);
    template<class T> void re(vector<T>& a);
    template<class T, size_t SZ> void re(array<T,SZ>& a);
    template<class T> void reA(T A[], int sz);

    template<class T> void re(T& x) { cin >> x; }
    void re(double& x) { string t; re(t); x = stod(t); }
    void re(ld& x) { string t; re(t); x = stold(t); }
    template<class Arg, class... Args> void re(Arg& first, Args&... rest) {
      re(first); re(rest...);
    }

    template<class T1, class T2> void re(pair<T1,T2>& p) { re(p.pA,p.pB); }
    template<class T> void re(vector<T>& a) { F0R(i,sz(a)) re(a[i]); }
    template<class T, size_t SZ> void re(array<T,SZ>& a) { F0R(i,SZ) re(a[i]); }
    template<class T> void reA(T A[], int sz) { F0R(i, sz) re(A[i]); }
}

using namespace input;

namespace output {
    template<class T1, class T2> void pr(const pair<T1,T2>& x);
    template<class T, size_t SZ> void pr(const array<T,SZ>& x);
    template<class T> void pr(const vector<T>& x);
    template<class T> void pr(const set<T>& x);
    template<class T1, class T2> void pr(const map<T1,T2>& x);

    template<class T> void pr(const T& x) { cout << x; }
    template<class Arg, class... Args> void pr(const Arg& first, const Args&... rest) {
      pr(first); pr(rest...);
    }

    template<class T1, class T2> void pr(const pair<T1,T2>& x) {
      pr("{",x.pA,", ",x.pB,"}");
    }
    template<class T> void prContain(const T& x) {
      pr("{");
      bool fst = 1; for (const auto& a: x) pr(!fst?", ":"",a), fst = 0; // const needed for vector<bool>
      pr("}");
    }
    template<class T, size_t SZ> void pr(const array<T,SZ>& x) { prContain(x); }
    template<class T> void pr(const vector<T>& x) { prContain(x); }
    template<class T> void pr(const set<T>& x) { prContain(x); }
    template<class T1, class T2> void pr(const map<T1,T2>& x) { prContain(x); }

    void ps() { pr("\n"); }
    template<class Arg> void ps(const Arg& first) {
      pr(first); ps(); // no space at end of line
    }
    template<class Arg, class... Args> void ps(const Arg& first, const Args&... rest) {
      pr(first," "); ps(rest...); // print w/ spaces
    }
}

using namespace output;

void setupIO(const string &PROB = "") {
  ios::sync_with_stdio(false);
  cin.tie(nullptr);
  if (PROB.length() != 0) {
    ifstream infile(PROB + ".in");
    if (infile.good()) {
      freopen((PROB + ".in").c_str(), "r", stdin);
      freopen((PROB + ".out").c_str(), "w", stdout);
    }
  }
}

/* ============================ */

ii nextNode[150000][2];
vii children[150000];
int maxRoute[150000];
bool visited[150000][2];
bool inStack[150000][2][2];
int memo[150000][2][2];
int ct[400000][2];
int pp;

int dp(int n, int x, int d) {
  if (n == pp && x == d) return 0;
  if (memo[n][x][d] != -1) return memo[n][x][d];
  if (inStack[n][x][d]) return INF;
  inStack[n][x][d] = true;
  return memo[n][x][d] = dp(nextNode[n][x].pA, nextNode[n][x].pB, d) + 1;
}

void count_routes(int N, int M, int P, int R[][2], int Q, int G[])
{
  pp = P;
  SET(maxRoute, INF, N);
  F0R(i, M) {
    children[R[i][0]].pb(mp(R[i][1], i));
    children[R[i][1]].pb(mp(R[i][0], i));
    MIN(maxRoute[R[i][0]], i);
    MIN(maxRoute[R[i][1]], i);
  }
  F0R(i, N) F0R(j, 2) nextNode[i][j] = { -1, -1 };
  F0R(i, N) {
    F0R(j, 2) {
      if (children[i].size() == 0) continue;
      if (children[i].size() == 1 || j == 0) {
        nextNode[i][j] = mp(children[i][0].pA, maxRoute[children[i][0].pA] == children[i][0].pB);
      }
      if (children[i].size() > 1 && j == 1) {
        nextNode[i][j] = mp(children[i][1].pA, maxRoute[children[i][1].pA] == children[i][1].pB);
      }
    }
  }

  int p0Loop = 0;
  SET2D(visited, false, N, 2);
  ii nxt = { P, 0 };
  while (true) {
    if (nxt.pA == -1 || visited[nxt.pA][nxt.pB]) {
      if (nxt.pA != P) p0Loop = -1;
      break;
    }
    visited[nxt.pA][nxt.pB] = true;
    if (nextNode[nxt.pA][nxt.pB].pA == -1) nxt = { -1, -1 };
    else {
      nxt = nextNode[nxt.pA][nxt.pB];
      p0Loop++;
    }
  }
  int p1Loop = 0;
  SET2D(visited, false, N, 2);
  nxt = { P, 1 };
  while (true) {
    if (nxt.pA == -1 || visited[nxt.pA][nxt.pB]) {
      if (nxt.pA != P) p1Loop = -1;
      break;
    }
    visited[nxt.pA][nxt.pB] = true;
    if (nextNode[nxt.pA][nxt.pB].pA == -1) nxt = { -1, -1 };
    else {
      nxt = nextNode[nxt.pA][nxt.pB];
      p1Loop++;
    }
  }

  SET3D(memo, -1, 150000, 2, 2);
  SET3D(inStack, false, 150000, 2, 2);
  SET2D(ct, 0, 400000, 2);
  int qryAns[Q]; SET(qryAns, 0, Q);
  F0R(startNode, N) {
    F0R(k, 2) {
      int xx = dp(startNode, 0, k);
      if (xx < INF) {
        ct[xx][k]++;
        F0R(i, Q) {
          if (G[i] - xx >= 0) {
            if (k == 0) {
              if (p0Loop != -1 && (G[i] - xx) % p0Loop == 0) qryAns[i]++;
              else if (xx == G[i]) qryAns[i]++;
            } else {
              if (p1Loop != -1 && (G[i] - xx) % p1Loop == 0) qryAns[i]++;
              else if (xx == G[i]) qryAns[i]++;
            }
          }
        }
      }
    }
  }

  F0R(i, Q) {
    answer(qryAns[i]);
  }
}


Compilation message

garden.cpp: In function 'void setupIO(const string&)':
garden.cpp:133:14: warning: ignoring return value of 'FILE* freopen(const char*, const char*, FILE*)', declared with attribute warn_unused_result [-Wunused-result]
       freopen((PROB + ".in").c_str(), "r", stdin);
       ~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
garden.cpp:134:14: warning: ignoring return value of 'FILE* freopen(const char*, const char*, FILE*)', declared with attribute warn_unused_result [-Wunused-result]
       freopen((PROB + ".out").c_str(), "w", stdout);
       ~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# Verdict Execution time Memory Grader output
1 Correct 7 ms 10028 KB Output is correct
2 Correct 11 ms 9916 KB Output is correct
3 Correct 10 ms 10052 KB Output is correct
4 Correct 10 ms 9932 KB Output is correct
5 Correct 10 ms 9876 KB Output is correct
6 Correct 12 ms 10104 KB Output is correct
7 Correct 10 ms 9952 KB Output is correct
8 Correct 11 ms 10036 KB Output is correct
9 Correct 13 ms 10292 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 7 ms 10028 KB Output is correct
2 Correct 11 ms 9916 KB Output is correct
3 Correct 10 ms 10052 KB Output is correct
4 Correct 10 ms 9932 KB Output is correct
5 Correct 10 ms 9876 KB Output is correct
6 Correct 12 ms 10104 KB Output is correct
7 Correct 10 ms 9952 KB Output is correct
8 Correct 11 ms 10036 KB Output is correct
9 Correct 13 ms 10292 KB Output is correct
10 Correct 10 ms 9948 KB Output is correct
11 Correct 21 ms 11632 KB Output is correct
12 Correct 35 ms 13272 KB Output is correct
13 Correct 53 ms 20696 KB Output is correct
14 Correct 98 ms 19408 KB Output is correct
15 Correct 102 ms 19744 KB Output is correct
16 Correct 89 ms 18040 KB Output is correct
17 Correct 100 ms 17500 KB Output is correct
18 Correct 37 ms 13148 KB Output is correct
19 Correct 92 ms 19460 KB Output is correct
20 Correct 102 ms 19716 KB Output is correct
21 Correct 99 ms 17848 KB Output is correct
22 Correct 91 ms 17272 KB Output is correct
23 Correct 91 ms 20344 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 7 ms 10028 KB Output is correct
2 Correct 11 ms 9916 KB Output is correct
3 Correct 10 ms 10052 KB Output is correct
4 Correct 10 ms 9932 KB Output is correct
5 Correct 10 ms 9876 KB Output is correct
6 Correct 12 ms 10104 KB Output is correct
7 Correct 10 ms 9952 KB Output is correct
8 Correct 11 ms 10036 KB Output is correct
9 Correct 13 ms 10292 KB Output is correct
10 Correct 10 ms 9948 KB Output is correct
11 Correct 21 ms 11632 KB Output is correct
12 Correct 35 ms 13272 KB Output is correct
13 Correct 53 ms 20696 KB Output is correct
14 Correct 98 ms 19408 KB Output is correct
15 Correct 102 ms 19744 KB Output is correct
16 Correct 89 ms 18040 KB Output is correct
17 Correct 100 ms 17500 KB Output is correct
18 Correct 37 ms 13148 KB Output is correct
19 Correct 92 ms 19460 KB Output is correct
20 Correct 102 ms 19716 KB Output is correct
21 Correct 99 ms 17848 KB Output is correct
22 Correct 91 ms 17272 KB Output is correct
23 Correct 91 ms 20344 KB Output is correct
24 Correct 11 ms 9980 KB Output is correct
25 Correct 41 ms 11640 KB Output is correct
26 Correct 45 ms 13176 KB Output is correct
27 Correct 1564 ms 20600 KB Output is correct
28 Correct 361 ms 19280 KB Output is correct
29 Correct 1524 ms 19576 KB Output is correct
30 Correct 897 ms 17848 KB Output is correct
31 Correct 885 ms 17260 KB Output is correct
32 Correct 40 ms 12920 KB Output is correct
33 Correct 363 ms 19268 KB Output is correct
34 Correct 1547 ms 19540 KB Output is correct
35 Correct 1004 ms 17644 KB Output is correct
36 Correct 956 ms 17008 KB Output is correct
37 Correct 223 ms 20148 KB Output is correct
38 Correct 1460 ms 23784 KB Output is correct